Explaining Multi-modal Large Language Models by Analyzing their Vision Perception
- URL: http://arxiv.org/abs/2405.14612v2
- Date: Tue, 28 May 2024 11:18:20 GMT
- Title: Explaining Multi-modal Large Language Models by Analyzing their Vision Perception
- Authors: Loris Giulivi, Giacomo Boracchi,
- Abstract summary: This research proposes a novel approach to enhance the interpretability of MLLMs by focusing on the image embedding component.
We combine an open-world localization model with a MLLM, thus creating a new architecture able to simultaneously produce text and object localization outputs from the same vision embedding.
- Score: 4.597864989500202
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-modal Large Language Models (MLLMs) have demonstrated remarkable capabilities in understanding and generating content across various modalities, such as images and text. However, their interpretability remains a challenge, hindering their adoption in critical applications. This research proposes a novel approach to enhance the interpretability of MLLMs by focusing on the image embedding component. We combine an open-world localization model with a MLLM, thus creating a new architecture able to simultaneously produce text and object localization outputs from the same vision embedding. The proposed architecture greatly promotes interpretability, enabling us to design a novel saliency map to explain any output token, to identify model hallucinations, and to assess model biases through semantic adversarial perturbations.
Related papers
- Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning.
We propose Complex Visual Reasoning Large Language Models (CVR-LLM)
Our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop.
We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs' contextual understanding and reasoning.
arXiv Detail & Related papers (2024-09-21T02:10:19Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-Former is a lightweight transformer module designed to exploit the complementary strengths of CL and MIM.
X-Former first bootstraps vision-language representation learning and multimodal-to-multimodal generative learning from two frozen vision encoders.
It further bootstraps vision-to-language generative learning from a frozen LLM to ensure visual features from X-Former can be interpreted by the LLM.
arXiv Detail & Related papers (2024-07-18T18:39:54Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - MR-MLLM: Mutual Reinforcement of Multimodal Comprehension and Vision Perception [24.406224705072763]
Mutually Reinforced Multimodal Large Language Model (MR-MLLM) is a novel framework that enhances visual perception and multimodal comprehension.
First, a shared query fusion mechanism is proposed to harmonize detailed visual inputs from vision models with the linguistic depth of language models.
Second, we propose the perception-enhanced cross-modal integration method, incorporating novel modalities from vision perception outputs.
arXiv Detail & Related papers (2024-06-22T07:10:36Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.