A Survey on Mechanistic Interpretability for Multi-Modal Foundation Models
- URL: http://arxiv.org/abs/2502.17516v1
- Date: Sat, 22 Feb 2025 20:55:26 GMT
- Title: A Survey on Mechanistic Interpretability for Multi-Modal Foundation Models
- Authors: Zihao Lin, Samyadeep Basu, Mohammad Beigi, Varun Manjunatha, Ryan A. Rossi, Zichao Wang, Yufan Zhou, Sriram Balasubramanian, Arman Zarei, Keivan Rezaei, Ying Shen, Barry Menglong Yao, Zhiyang Xu, Qin Liu, Yuxiang Zhang, Yan Sun, Shilong Liu, Li Shen, Hongxuan Li, Soheil Feizi, Lifu Huang,
- Abstract summary: The rise of foundation models has transformed machine learning research.<n> multimodal foundation models (MMFMs) pose unique interpretability challenges beyond unimodal frameworks.<n>This survey explores two key aspects: (1) the adaptation of LLM interpretability methods to multimodal models and (2) understanding the mechanistic differences between unimodal language models and crossmodal systems.
- Score: 74.48084001058672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of foundation models has transformed machine learning research, prompting efforts to uncover their inner workings and develop more efficient and reliable applications for better control. While significant progress has been made in interpreting Large Language Models (LLMs), multimodal foundation models (MMFMs) - such as contrastive vision-language models, generative vision-language models, and text-to-image models - pose unique interpretability challenges beyond unimodal frameworks. Despite initial studies, a substantial gap remains between the interpretability of LLMs and MMFMs. This survey explores two key aspects: (1) the adaptation of LLM interpretability methods to multimodal models and (2) understanding the mechanistic differences between unimodal language models and crossmodal systems. By systematically reviewing current MMFM analysis techniques, we propose a structured taxonomy of interpretability methods, compare insights across unimodal and multimodal architectures, and highlight critical research gaps.
Related papers
- Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey [46.617998833238126]
Large language models (LLMs) and computer vision (CV) systems driving advancements in natural language understanding and visual processing.<n>The convergence of these technologies has catalyzed the rise of multimodal AI, enabling richer, cross-modal understanding that spans text, vision, audio, and video modalities.<n>Multimodal large language models (MLLMs) have emerged as a powerful framework, demonstrating impressive capabilities in tasks like image-text generation, visual question answering, and cross-modal retrieval.<n>Despite these advancements, the complexity and scale of MLLMs introduce significant challenges in interpretability and explainability, essential for establishing
arXiv Detail & Related papers (2024-12-03T02:54:31Z) - Explaining Multi-modal Large Language Models by Analyzing their Vision Perception [4.597864989500202]
This research proposes a novel approach to enhance the interpretability of MLLMs by focusing on the image embedding component.
We combine an open-world localization model with a MLLM, thus creating a new architecture able to simultaneously produce text and object localization outputs from the same vision embedding.
arXiv Detail & Related papers (2024-05-23T14:24:23Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Multimodal Foundation Models: From Specialists to General-Purpose
Assistants [187.72038587829223]
The research landscape encompasses five core topics, categorized into two classes.
The target audiences of the paper are researchers, graduate students, and professionals in computer vision and vision-language multimodal communities.
arXiv Detail & Related papers (2023-09-18T17:56:28Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - M2Lens: Visualizing and Explaining Multimodal Models for Sentiment
Analysis [28.958168542624062]
We present an interactive visual analytics system, M2Lens, to visualize and explain multimodal models for sentiment analysis.
M2Lens provides explanations on intra- and inter-modal interactions at the global, subset, and local levels.
arXiv Detail & Related papers (2021-07-17T15:54:27Z) - Good for Misconceived Reasons: An Empirical Revisiting on the Need for
Visual Context in Multimodal Machine Translation [41.50096802992405]
A neural multimodal machine translation (MMT) system aims to perform better translation by extending conventional text-only translation models with multimodal information.
We revisit the contribution of multimodal information in MMT by devising two interpretable MMT models.
We discover that the improvements achieved by the multimodal models over text-only counterparts are in fact results of the regularization effect.
arXiv Detail & Related papers (2021-05-30T08:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.