Lagrangian Neural Networks for Reversible Dissipative Evolution
- URL: http://arxiv.org/abs/2405.14645v2
- Date: Sun, 26 May 2024 21:03:09 GMT
- Title: Lagrangian Neural Networks for Reversible Dissipative Evolution
- Authors: Veera Sundararaghavan, Megna N. Shah, Jeff P. Simmons,
- Abstract summary: Most commonly, conservative systems are modeled, in which there are no frictional losses, so the system may be run forward and backward in time without requiring regularization.
This work addresses systems in which the reverse direction is ill-posed because of the dissipation that occurs in forward evolution.
The novelty is the use of Morse-Feshbach Lagrangian, which models dissipative dynamics by doubling the number of dimensions of the system.
- Score: 0.04681661603096333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing attention given to utilizing Lagrangian and Hamiltonian mechanics with network training in order to incorporate physics into the network. Most commonly, conservative systems are modeled, in which there are no frictional losses, so the system may be run forward and backward in time without requiring regularization. This work addresses systems in which the reverse direction is ill-posed because of the dissipation that occurs in forward evolution. The novelty is the use of Morse-Feshbach Lagrangian, which models dissipative dynamics by doubling the number of dimensions of the system in order to create a mirror latent representation that would counterbalance the dissipation of the observable system, making it a conservative system, albeit embedded in a larger space. We start with their formal approach by redefining a new Dissipative Lagrangian, such that the unknown matrices in the Euler-Lagrange's equations arise as partial derivatives of the Lagrangian with respect to only the observables. We then train a network from simulated training data for dissipative systems such as Fickian diffusion that arise in materials sciences. It is shown by experiments that the systems can be evolved in both forward and reverse directions without regularization beyond that provided by the Morse-Feshbach Lagrangian. Experiments of dissipative systems, such as Fickian diffusion, demonstrate the degree to which dynamics can be reversed.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Neural Astrophysical Wind Models [0.0]
We show that deep neural networks embedded as individual terms in the governing coupled ordinary differential equations (ODEs) can robustly discover both of these physics.
We optimize a loss function based on the Mach number, rather than the explicitly solved-for 3 conserved variables, and apply a penalty term towards near-diverging solutions.
This work further highlights the feasibility of neural ODEs as a promising discovery tool with mechanistic interpretability for non-linear inverse problems.
arXiv Detail & Related papers (2023-06-20T16:37:57Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
Solving fluid dynamics equations often requires the use of closure relations that account for missing microphysics.
In our study, a partial differential equation simulator that is end-to-end differentiable is used to train judiciously placed neural networks.
We show that this method enables an equation based approach to reproduce non-linear, large Knudsen number plasma physics.
arXiv Detail & Related papers (2023-06-19T06:02:53Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery [3.06483729892265]
We introduce a framework to learn a discrete Lagrangian along with its symmetry group from discrete observations of motions.
The learning process does not restrict the form of the Lagrangian, does not require velocity or momentum observations or predictions and incorporates a cost term.
arXiv Detail & Related papers (2022-11-20T00:46:33Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Lagrangian Neural Network with Differential Symmetries and Relational
Inductive Bias [5.017136256232997]
We present a momentum conserving Lagrangian neural network (MCLNN) that learns the Lagrangian of a system.
We also show that the model developed can generalize to systems of any arbitrary size.
arXiv Detail & Related papers (2021-10-07T08:49:57Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
We study the limiting dynamics of deep neural networks trained with gradient descent (SGD)
We show that the key ingredient driving these dynamics is not the original training loss, but rather the combination of a modified loss, which implicitly regularizes the velocity and probability currents, which cause oscillations in phase space.
arXiv Detail & Related papers (2021-07-19T20:18:57Z) - Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit
Constraints [49.66841118264278]
We introduce a series of challenging chaotic and extended-body systems to push the limits of current approaches.
Our experiments show that Cartesian coordinates with explicit constraints lead to a 100x improvement in accuracy and data efficiency.
arXiv Detail & Related papers (2020-10-26T13:35:16Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.