Fisher Flow Matching for Generative Modeling over Discrete Data
- URL: http://arxiv.org/abs/2405.14664v4
- Date: Wed, 30 Oct 2024 11:01:10 GMT
- Title: Fisher Flow Matching for Generative Modeling over Discrete Data
- Authors: Oscar Davis, Samuel Kessler, Mircea Petrache, İsmail İlkan Ceylan, Michael Bronstein, Avishek Joey Bose,
- Abstract summary: We introduce Fisher-Flow, a novel flow-matching model for discrete data.
Fisher-Flow takes a manifestly geometric perspective by considering categorical distributions over discrete data.
We prove that the gradient flow induced by Fisher-Flow is optimal in reducing the forward KL divergence.
- Score: 12.69975914345141
- License:
- Abstract: Generative modeling over discrete data has recently seen numerous success stories, with applications spanning language modeling, biological sequence design, and graph-structured molecular data. The predominant generative modeling paradigm for discrete data is still autoregressive, with more recent alternatives based on diffusion or flow-matching falling short of their impressive performance in continuous data settings, such as image or video generation. In this work, we introduce Fisher-Flow, a novel flow-matching model for discrete data. Fisher-Flow takes a manifestly geometric perspective by considering categorical distributions over discrete data as points residing on a statistical manifold equipped with its natural Riemannian metric: the $\textit{Fisher-Rao metric}$. As a result, we demonstrate discrete data itself can be continuously reparameterised to points on the positive orthant of the $d$-hypersphere $\mathbb{S}^d_+$, which allows us to define flows that map any source distribution to target in a principled manner by transporting mass along (closed-form) geodesics of $\mathbb{S}^d_+$. Furthermore, the learned flows in Fisher-Flow can be further bootstrapped by leveraging Riemannian optimal transport leading to improved training dynamics. We prove that the gradient flow induced by Fisher-Flow is optimal in reducing the forward KL divergence. We evaluate Fisher-Flow on an array of synthetic and diverse real-world benchmarks, including designing DNA Promoter, and DNA Enhancer sequences. Empirically, we find that Fisher-Flow improves over prior diffusion and flow-matching models on these benchmarks.
Related papers
- TFG-Flow: Training-free Guidance in Multimodal Generative Flow [73.93071065307782]
We introduce TFG-Flow, a training-free guidance method for multimodal generative flow.
TFG-Flow addresses the curse-of-dimensionality while maintaining the property of unbiased sampling in guiding discrete variables.
We show that TFG-Flow has great potential in drug design by generating molecules with desired properties.
arXiv Detail & Related papers (2025-01-24T03:44:16Z) - Elucidating Flow Matching ODE Dynamics with Respect to Data Geometries [10.947094609205765]
Diffusion-based generative models have become the standard for image generation. ODE-based samplers and flow matching models improve efficiency, in comparison to diffusion models, by reducing sampling steps through learned vector fields.
We advance the theory of flow matching models through a comprehensive analysis of sample trajectories, centered on the denoiser that drives ODE dynamics.
Our analysis reveals how trajectories evolve from capturing global data features to local structures, providing the geometric characterization of per-sample behavior in flow matching models.
arXiv Detail & Related papers (2024-12-25T01:17:15Z) - Wasserstein Flow Matching: Generative modeling over families of distributions [13.620905707751747]
We show how to perform generative modeling over Gaussian distributions, where we generate representations of granular cell states from single-cell genomics data.
We also show that WFM can learn flows between high-dimensional and variable sized point-clouds and synthesize cellular microenvironments from spatial transcriptomics datasets.
arXiv Detail & Related papers (2024-11-01T15:55:07Z) - DeFoG: Discrete Flow Matching for Graph Generation [45.037260759871124]
We propose DeFoG, a novel framework using discrete flow matching for graph generation.
DeFoG employs a flow-based approach that features an efficient linear noising process and a flexible denoising process.
We show that DeFoG achieves state-of-the-art results on synthetic and molecular datasets.
arXiv Detail & Related papers (2024-10-05T18:52:54Z) - Local Flow Matching Generative Models [19.859984725284896]
Local Flow Matching is a computational framework for density estimation based on flow-based generative models.
$textttLFM$ employs a simulation-free scheme and incrementally learns a sequence of Flow Matching sub-models.
We demonstrate the improved training efficiency and competitive generative performance of $textttLFM$ compared to FM.
arXiv Detail & Related papers (2024-10-03T14:53:10Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Discrete Denoising Flows [87.44537620217673]
We introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs)
In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias.
We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.
arXiv Detail & Related papers (2021-07-24T14:47:22Z) - Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow [16.41460104376002]
We introduce subset flows, a class of flows that can transform finite volumes and allow exact computation of likelihoods for discrete data.
We identify ordinal discrete autoregressive models, including WaveNets, PixelCNNs and Transformers, as single-layer flows.
We demonstrate state-of-the-art results on CIFAR-10 for flow models trained with dequantization.
arXiv Detail & Related papers (2020-02-06T22:58:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.