Local Flow Matching Generative Models
- URL: http://arxiv.org/abs/2410.02548v2
- Date: Tue, 31 Dec 2024 01:50:58 GMT
- Title: Local Flow Matching Generative Models
- Authors: Chen Xu, Xiuyuan Cheng, Yao Xie,
- Abstract summary: Local Flow Matching is a computational framework for density estimation based on flow-based generative models.
$textttLFM$ employs a simulation-free scheme and incrementally learns a sequence of Flow Matching sub-models.
We demonstrate the improved training efficiency and competitive generative performance of $textttLFM$ compared to FM.
- Score: 19.859984725284896
- License:
- Abstract: Density estimation is a fundamental problem in statistics and machine learning. We consider a modern approach using flow-based generative models, and propose Local Flow Matching ($\texttt{LFM}$), a computational framework for density estimation based on such models, which learn a continuous and invertible flow to map noise samples to data samples. Unlike existing methods, $\texttt{LFM}$ employs a simulation-free scheme and incrementally learns a sequence of Flow Matching sub-models. Each sub-model matches a diffusion process over a small step size in the data-to-noise direction. This iterative process reduces the gap between the two distributions interpolated by the sub-models, enabling smaller models with faster training times. Theoretically, we prove a generation guarantee of the proposed flow model regarding the $\chi^2$-divergence between the generated and true data distributions. Experimentally, we demonstrate the improved training efficiency and competitive generative performance of $\texttt{LFM}$ compared to FM on the unconditional generation of tabular data and image datasets and its applicability to robotic manipulation policy learning.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
We propose a family of informed correctors that more reliably counteracts discretization error by leveraging information learned by the model.
We also propose $k$-Gillespie's, a sampling algorithm that better utilizes each model evaluation, while still enjoying the speed and flexibility of $tau$-leaping.
Across several real and synthetic datasets, we show that $k$-Gillespie's with informed correctors reliably produces higher quality samples at lower computational cost.
arXiv Detail & Related papers (2024-07-30T23:29:29Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Flow Map Matching [15.520853806024943]
Flow map matching is an algorithm that learns the two-time flow map of an underlying ordinary differential equation.
We show that flow map matching leads to high-quality samples with significantly reduced sampling cost compared to diffusion or interpolant methods.
arXiv Detail & Related papers (2024-06-11T17:41:26Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Bayesian Flow Networks [4.585102332532472]
This paper introduces Bayesian Flow Networks (BFNs), a new class of generative model in which the parameters of a set of independent distributions are modified with Bayesian inference.
Starting from a simple prior and iteratively updating the two distributions yields a generative procedure similar to the reverse process of diffusion models.
BFNs achieve competitive log-likelihoods for image modelling on dynamically binarized MNIST and CIFAR-10, and outperform all known discrete diffusion models on the text8 character-level language modelling task.
arXiv Detail & Related papers (2023-08-14T09:56:35Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Discrete Denoising Flows [87.44537620217673]
We introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs)
In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias.
We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.
arXiv Detail & Related papers (2021-07-24T14:47:22Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.