A Declarative System for Optimizing AI Workloads
- URL: http://arxiv.org/abs/2405.14696v2
- Date: Wed, 29 May 2024 15:27:07 GMT
- Title: A Declarative System for Optimizing AI Workloads
- Authors: Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen, Zui Chen, Michael Franklin, Tim Kraska, Samuel Madden, Gerardo Vitagliano,
- Abstract summary: Palimpzest is a system that enables anyone to process AI-powered analytical queries simply by defining them in a declarative language.
We describe the workload of AI-powered analytics tasks, the optimization methods that Palimpzest uses, and the prototype system itself.
We show that even our simple prototype offers a range of appealing plans, including one that is 3.3x faster and 2.9x cheaper than the baseline method.
- Score: 14.302404377396837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A long-standing goal of data management systems has been to build systems which can compute quantitative insights over large corpora of unstructured data in a cost-effective manner. Until recently, it was difficult and expensive to extract facts from company documents, data from scientific papers, or metrics from image and video corpora. Today's models can accomplish these tasks with high accuracy. However, a programmer who wants to answer a substantive AI-powered query must orchestrate large numbers of models, prompts, and data operations. For even a single query, the programmer has to make a vast number of decisions such as the choice of model, the right inference method, the most cost-effective inference hardware, the ideal prompt design, and so on. The optimal set of decisions can change as the query changes and as the rapidly-evolving technical landscape shifts. In this paper we present Palimpzest, a system that enables anyone to process AI-powered analytical queries simply by defining them in a declarative language. The system uses its cost optimization framework to implement the query plan with the best trade-offs between runtime, financial cost, and output data quality. We describe the workload of AI-powered analytics tasks, the optimization methods that Palimpzest uses, and the prototype system itself. We evaluate Palimpzest on tasks in Legal Discovery, Real Estate Search, and Medical Schema Matching. We show that even our simple prototype offers a range of appealing plans, including one that is 3.3x faster and 2.9x cheaper than the baseline method, while also offering better data quality. With parallelism enabled, Palimpzest can produce plans with up to a 90.3x speedup at 9.1x lower cost relative to a single-threaded GPT-4 baseline, while obtaining an F1-score within 83.5% of the baseline. These require no additional work by the user.
Related papers
- OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents [8.441638148384389]
We introduce OptimAI, a framework for solving Optimization problems described in natural language.<n>Our framework is built upon the following key roles: formulator, planner, coder and code critic.<n>Our approach attains 88.1% accuracy on the NLP4LP dataset and 82.3% on the Optibench dataset, reducing error rates by 58% and 52%, respectively, over prior best results.
arXiv Detail & Related papers (2025-04-23T17:45:05Z) - Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
We develop an automated approach to creating optimization models from natural language descriptions for commercial solvers.
We identify the three core challenges of autoformulation: (1) defining the vast, problem-dependent hypothesis space, (2) efficiently searching this space under uncertainty, and (3) evaluating formulation correctness.
arXiv Detail & Related papers (2024-11-03T20:41:38Z) - Self-Steering Optimization: Autonomous Preference Optimization for Large Language Models [79.84205827056907]
We present Self-Steering Optimization ($SSO$), an algorithm that autonomously generates high-quality preference data.<n>$SSO$ employs a specialized optimization objective to build a data generator from the policy model itself, which is used to produce accurate and on-policy data.<n>Our evaluation shows that $SSO$ consistently outperforms baselines in human preference alignment and reward optimization.
arXiv Detail & Related papers (2024-10-22T16:04:03Z) - OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale [16.33736498565436]
We introduce a Large Language Model (LLM)-based system designed to formulate and solve linear programming problems from their natural language descriptions.
Our system is capable of developing mathematical models, writing and debugning solver code, evaluating the generated solutions, and improving efficiency and correctness of its model and code.
Experiments demonstrate that OptiMUS-0.3 outperforms existing state-of-the-art methods on easy datasets by more than 12% and on hard datasets by more than 8%.
arXiv Detail & Related papers (2024-07-29T01:31:45Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning.
We propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs.
arXiv Detail & Related papers (2024-07-13T13:27:57Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
Large language models (LLMs) power many state-of-the-art systems in natural language processing.
LLMs are extremely computationally expensive, even at inference time.
We propose a new metric for comparing inference efficiency across models.
arXiv Detail & Related papers (2023-05-03T21:51:42Z) - Bayesian Optimization Over Iterative Learners with Structured Responses:
A Budget-aware Planning Approach [31.918476422203412]
This paper proposes a novel approach referred to as Budget-Aware Planning for Iterative learners (BAPI) to solve HPO problems under a constrained cost budget.
Experiments on diverse HPO benchmarks for iterative learners show that BAPI performs better than state-of-the-art baselines in most of the cases.
arXiv Detail & Related papers (2022-06-25T18:44:06Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - $\{\text{PF}\}^2\text{ES}$: Parallel Feasible Pareto Frontier Entropy
Search for Multi-Objective Bayesian Optimization Under Unknown Constraints [4.672142224503371]
We present a novel information-theoretic acquisition function for multi-objective Bayesian optimization.
$textPF2$ES provides a low cost and accurate estimate of the mutual information for the parallel setting.
We benchmark $textPF2$ES across synthetic and real-life problems.
arXiv Detail & Related papers (2022-04-11T21:06:23Z) - An Experimental Design Perspective on Model-Based Reinforcement Learning [73.37942845983417]
In practical applications of RL, it is expensive to observe state transitions from the environment.
We propose an acquisition function that quantifies how much information a state-action pair would provide about the optimal solution to a Markov decision process.
arXiv Detail & Related papers (2021-12-09T23:13:57Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation,
Cost Model, and Plan Enumeration [17.75042918159419]
A cost-based algorithm is adopted in almost all current database systems.
In the cost model, cardinality, the number of the numbers through an operator plays a crucial role.
Due to the inaccuracy in cardinality estimation, errors in cost, and the huge plan space model, the algorithm cannot find the optimal execution plan for a complex query in a reasonable time.
arXiv Detail & Related papers (2021-01-05T13:47:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.