OpFlowTalker: Realistic and Natural Talking Face Generation via Optical Flow Guidance
- URL: http://arxiv.org/abs/2405.14709v2
- Date: Tue, 28 May 2024 09:07:34 GMT
- Title: OpFlowTalker: Realistic and Natural Talking Face Generation via Optical Flow Guidance
- Authors: Shuheng Ge, Haoyu Xing, Li Zhang, Xiangqian Wu,
- Abstract summary: "OpFlowTalker" is a novel approach that utilizes predicted optical flow changes from audio inputs rather than direct image predictions.
It smooths image transitions and aligns changes with semantic content.
We also developed an optical flow synchronization module that regulates both full-face and lip movements.
- Score: 13.050998759819933
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Creating realistic, natural, and lip-readable talking face videos remains a formidable challenge. Previous research primarily concentrated on generating and aligning single-frame images while overlooking the smoothness of frame-to-frame transitions and temporal dependencies. This often compromised visual quality and effects in practical settings, particularly when handling complex facial data and audio content, which frequently led to semantically incongruent visual illusions. Specifically, synthesized videos commonly featured disorganized lip movements, making them difficult to understand and recognize. To overcome these limitations, this paper introduces the application of optical flow to guide facial image generation, enhancing inter-frame continuity and semantic consistency. We propose "OpFlowTalker", a novel approach that utilizes predicted optical flow changes from audio inputs rather than direct image predictions. This method smooths image transitions and aligns changes with semantic content. Moreover, it employs a sequence fusion technique to replace the independent generation of single frames, thus preserving contextual information and maintaining temporal coherence. We also developed an optical flow synchronization module that regulates both full-face and lip movements, optimizing visual synthesis by balancing regional dynamics. Furthermore, we introduce a Visual Text Consistency Score (VTCS) that accurately measures lip-readability in synthesized videos. Extensive empirical evidence validates the effectiveness of our approach.
Related papers
- Optical-Flow Guided Prompt Optimization for Coherent Video Generation [51.430833518070145]
We propose a framework called MotionPrompt that guides the video generation process via optical flow.
We optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs.
This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content.
arXiv Detail & Related papers (2024-11-23T12:26:52Z) - High-fidelity and Lip-synced Talking Face Synthesis via Landmark-based Diffusion Model [89.29655924125461]
We propose a novel landmark-based diffusion model for talking face generation.
We first establish the less ambiguous mapping from audio to landmark motion of lip and jaw.
Then, we introduce an innovative conditioning module called TalkFormer to align the synthesized motion with the motion represented by landmarks.
arXiv Detail & Related papers (2024-08-10T02:58:28Z) - RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network [48.95833484103569]
RealTalk is an audio-to-expression transformer and a high-fidelity expression-to-face framework.
In the first component, we consider both identity and intra-personal variation features related to speaking lip movements.
In the second component, we design a lightweight facial identity alignment (FIA) module.
This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules.
arXiv Detail & Related papers (2024-06-26T12:09:59Z) - Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation [29.87407471246318]
This research delves into the complexities of synchronizing facial movements and creating visually appealing, temporally consistent animations.
Our innovative approach embraces the end-to-end diffusion paradigm and introduces a hierarchical audio-driven visual synthesis module.
The proposed hierarchical audio-driven visual synthesis offers adaptive control over expression and pose diversity, enabling more effective personalization tailored to different identities.
arXiv Detail & Related papers (2024-06-13T04:33:20Z) - Free-Bloom: Zero-Shot Text-to-Video Generator with LLM Director and LDM
Animator [59.589919015669274]
This study focuses on zero-shot text-to-video generation considering the data- and cost-efficient.
We propose a novel Free-Bloom pipeline that harnesses large language models (LLMs) as the director to generate a semantic-coherence prompt sequence.
We also propose a series of annotative modifications to adapting LDMs in the reverse process, including joint noise sampling, step-aware attention shift, and dual-path.
arXiv Detail & Related papers (2023-09-25T19:42:16Z) - Motion and Context-Aware Audio-Visual Conditioned Video Prediction [58.9467115916639]
We decouple the audio-visual conditioned video prediction into motion and appearance modeling.
The multimodal motion estimation predicts future optical flow based on the audio-motion correlation.
We propose context-aware refinement to address the diminishing of the global appearance context.
arXiv Detail & Related papers (2022-12-09T05:57:46Z) - Unsupervised Coherent Video Cartoonization with Perceptual Motion
Consistency [89.75731026852338]
We propose a spatially-adaptive alignment framework with perceptual motion consistency for coherent video cartoonization.
We devise the semantic correlative map as a style-independent, global-aware regularization on the perceptual consistency motion.
Our method is able to generate highly stylistic and temporal consistent cartoon videos.
arXiv Detail & Related papers (2022-04-02T07:59:02Z) - FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute
Learning [23.14865405847467]
We propose a talking face generation method that takes an audio signal as input and a short target video clip as reference.
The method synthesizes a photo-realistic video of the target face with natural lip motions, head poses, and eye blinks that are in-sync with the input audio signal.
Experimental results and user studies show our method can generate realistic talking face videos with better qualities than the results of state-of-the-art methods.
arXiv Detail & Related papers (2021-08-18T02:10:26Z) - A Neural Lip-Sync Framework for Synthesizing Photorealistic Virtual News
Anchors [8.13692293541489]
Lip sync has emerged as a promising technique for generating mouth movements from audio signals.
This paper presents a novel lip-sync framework specially designed for producing high-fidelity virtual news anchors.
arXiv Detail & Related papers (2020-02-20T12:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.