OmniSync: Towards Universal Lip Synchronization via Diffusion Transformers
- URL: http://arxiv.org/abs/2505.21448v1
- Date: Tue, 27 May 2025 17:20:38 GMT
- Title: OmniSync: Towards Universal Lip Synchronization via Diffusion Transformers
- Authors: Ziqiao Peng, Jiwen Liu, Haoxian Zhang, Xiaoqiang Liu, Songlin Tang, Pengfei Wan, Di Zhang, Hongyan Liu, Jun He,
- Abstract summary: We present OmniSync, a universal lip synchronization framework for diverse visual scenarios.<n>Our approach introduces a mask-free training paradigm using Diffusion Transformer models for direct frame editing without explicit masks.<n>We also establish the AIGCLipSync Benchmark, the first evaluation suite for lip sync in AI-generated videos.
- Score: 13.623360048766603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lip synchronization is the task of aligning a speaker's lip movements in video with corresponding speech audio, and it is essential for creating realistic, expressive video content. However, existing methods often rely on reference frames and masked-frame inpainting, which limit their robustness to identity consistency, pose variations, facial occlusions, and stylized content. In addition, since audio signals provide weaker conditioning than visual cues, lip shape leakage from the original video will affect lip sync quality. In this paper, we present OmniSync, a universal lip synchronization framework for diverse visual scenarios. Our approach introduces a mask-free training paradigm using Diffusion Transformer models for direct frame editing without explicit masks, enabling unlimited-duration inference while maintaining natural facial dynamics and preserving character identity. During inference, we propose a flow-matching-based progressive noise initialization to ensure pose and identity consistency, while allowing precise mouth-region editing. To address the weak conditioning signal of audio, we develop a Dynamic Spatiotemporal Classifier-Free Guidance (DS-CFG) mechanism that adaptively adjusts guidance strength over time and space. We also establish the AIGC-LipSync Benchmark, the first evaluation suite for lip synchronization in diverse AI-generated videos. Extensive experiments demonstrate that OmniSync significantly outperforms prior methods in both visual quality and lip sync accuracy, achieving superior results in both real-world and AI-generated videos.
Related papers
- SkyReels-Audio: Omni Audio-Conditioned Talking Portraits in Video Diffusion Transformers [25.36460340267922]
We present SkyReels-Audio, a unified framework for synthesizing high-fidelity and temporally coherent talking portrait videos.<n>Our framework supports infinite-length generation and editing, while enabling diverse and controllable conditioning through multimodal inputs.
arXiv Detail & Related papers (2025-06-01T04:27:13Z) - Cosh-DiT: Co-Speech Gesture Video Synthesis via Hybrid Audio-Visual Diffusion Transformers [58.86974149731874]
Cosh-DiT is a Co-speech gesture video system with hybrid Diffusion Transformers.<n>We introduce an audio Diffusion Transformer to synthesize expressive gesture dynamics synchronized with speech rhythms.<n>For realistic video synthesis conditioned on the generated speech-driven motion, we design a visual Diffusion Transformer.
arXiv Detail & Related papers (2025-03-13T01:36:05Z) - SayAnything: Audio-Driven Lip Synchronization with Conditional Video Diffusion [78.77211425667542]
SayAnything is a conditional video diffusion framework that directly synthesizes lip movements from audio input.<n>Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation.
arXiv Detail & Related papers (2025-02-17T07:29:36Z) - Style-Preserving Lip Sync via Audio-Aware Style Reference [88.02195932723744]
Individuals exhibit distinct lip shapes when speaking the same utterance, attributed to the unique speaking styles of individuals.
We develop an advanced Transformer-based model adept at predicting lip motion corresponding to the input audio, augmented by the style information aggregated through cross-attention layers from style reference video.
Experiments validate the efficacy of the proposed approach in achieving precise lip sync, preserving speaking styles, and generating high-fidelity, realistic talking face videos.
arXiv Detail & Related papers (2024-08-10T02:46:11Z) - ReSyncer: Rewiring Style-based Generator for Unified Audio-Visually Synced Facial Performer [87.32518573172631]
ReSyncer fuses motion and appearance with unified training.
It supports fast personalized fine-tuning, video-driven lip-syncing, the transfer of speaking styles, and even face swapping.
arXiv Detail & Related papers (2024-08-06T16:31:45Z) - Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation [29.87407471246318]
This research delves into the complexities of synchronizing facial movements and creating visually appealing, temporally consistent animations.
Our innovative approach embraces the end-to-end diffusion paradigm and introduces a hierarchical audio-driven visual synthesis module.
The proposed hierarchical audio-driven visual synthesis offers adaptive control over expression and pose diversity, enabling more effective personalization tailored to different identities.
arXiv Detail & Related papers (2024-06-13T04:33:20Z) - OpFlowTalker: Realistic and Natural Talking Face Generation via Optical Flow Guidance [13.050998759819933]
"OpFlowTalker" is a novel approach that utilizes predicted optical flow changes from audio inputs rather than direct image predictions.
It smooths image transitions and aligns changes with semantic content.
We also developed an optical flow synchronization module that regulates both full-face and lip movements.
arXiv Detail & Related papers (2024-05-23T15:42:34Z) - SwapTalk: Audio-Driven Talking Face Generation with One-Shot Customization in Latent Space [13.59798532129008]
We propose an innovative unified framework, SwapTalk, which accomplishes both face swapping and lip synchronization tasks in the same latent space.
We introduce a novel identity consistency metric to more comprehensively assess the identity consistency over time series in generated facial videos.
Experimental results on the HDTF demonstrate that our method significantly surpasses existing techniques in video quality, lip synchronization accuracy, face swapping fidelity, and identity consistency.
arXiv Detail & Related papers (2024-05-09T09:22:09Z) - Audio-driven Talking Face Generation with Stabilized Synchronization Loss [60.01529422759644]
Talking face generation aims to create realistic videos with accurate lip synchronization and high visual quality.
We first tackle the lip leaking problem by introducing a silent-lip generator, which changes the lips of the identity reference to alleviate leakage.
Experiments show that our model outperforms state-of-the-art methods in both visual quality and lip synchronization.
arXiv Detail & Related papers (2023-07-18T15:50:04Z) - StyleLipSync: Style-based Personalized Lip-sync Video Generation [2.9914612342004503]
StyleLipSync is a style-based personalized lip-sync video generative model.
Our model can generate accurate lip-sync videos even with the zero-shot setting.
arXiv Detail & Related papers (2023-04-30T16:38:42Z) - Masked Lip-Sync Prediction by Audio-Visual Contextual Exploitation in
Transformers [91.00397473678088]
Previous studies have explored generating accurately lip-synced talking faces for arbitrary targets given audio conditions.
We propose the Audio-Visual Context-Aware Transformer (AV-CAT) framework, which produces accurate lip-sync with photo-realistic quality.
Our model can generate high-fidelity lip-synced results for arbitrary subjects.
arXiv Detail & Related papers (2022-12-09T16:32:46Z) - StyleTalker: One-shot Style-based Audio-driven Talking Head Video Generation [47.06075725469252]
StyleTalker is an audio-driven talking head generation model.
It can synthesize a video of a talking person from a single reference image.
Our model is able to synthesize talking head videos with impressive perceptual quality.
arXiv Detail & Related papers (2022-08-23T12:49:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.