Maintaining Structural Integrity in Parameter Spaces for Parameter Efficient Fine-tuning
- URL: http://arxiv.org/abs/2405.14739v2
- Date: Thu, 06 Feb 2025 05:57:37 GMT
- Title: Maintaining Structural Integrity in Parameter Spaces for Parameter Efficient Fine-tuning
- Authors: Chongjie Si, Xuehui Wang, Xue Yang, Zhengqin Xu, Qingyun Li, Jifeng Dai, Yu Qiao, Xiaokang Yang, Wei Shen,
- Abstract summary: Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence.
To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner.
This paper introduces a generalized parameter-efficient fine-tuning framework, designed for various dimensional parameter space.
- Score: 78.39310274926535
- License:
- Abstract: Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence. Due to the vast number of tasks and high costs, adjusting all parameters becomes unfeasible. To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner, such as through low-rank adjustments. Yet, almost all of these methods focus on linear weights, neglecting the intricacies of parameter spaces in higher dimensions like 4D. Alternatively, some methods can be adapted for high-dimensional parameter space by compressing changes in the original space into two dimensions and then employing low-rank matrix adaptations. However, these approaches destructs the structural integrity of the involved high-dimensional spaces. To tackle the diversity of dimensional spaces across different foundation models and provide a more precise representation of the changes within these spaces, this paper introduces a generalized parameter-efficient fine-tuning framework, designed for various dimensional parameter space. Specifically, our method asserts that changes in each dimensional parameter space are based on a low-rank core space which maintains the consistent topological structure with the original space. It then models the changes through this core space alongside corresponding weights to reconstruct alterations in the original space. It effectively preserves the structural integrity of the change of original N-dimensional parameter space, meanwhile models it via low-rank tensor adaptation. Extensive experiments on computer vision, natural language processing and multi-modal tasks validate the effectiveness of our method.
Related papers
- Modeling All Response Surfaces in One for Conditional Search Spaces [69.90317997694218]
This paper proposes a novel approach to model the response surfaces of all subspaces in one.
We introduce an attention-based deep feature extractor, capable of projecting configurations with different structures from various subspaces into a unified feature space.
arXiv Detail & Related papers (2025-01-08T03:56:06Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - MCNC: Manifold Constrained Network Compression [21.70510507535041]
We present MCNC as a novel model compression method that constrains the parameter space to low-dimensional pre-defined and frozen nonlinear manifold.
We show that our method, MCNC, significantly outperforms state-of-the-art baselines in terms of compression, accuracy, and/or model reconstruction time.
arXiv Detail & Related papers (2024-06-27T16:17:26Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
We equip PEFT with a cross-block orchestration mechanism to enable the adaptation of the Segment Anything Model (SAM) to various downstream scenarios.
We propose an intra-block enhancement module, which introduces a linear projection head whose weights are generated from a hyper-complex layer.
Our proposed approach consistently improves the segmentation performance significantly on novel scenarios with only around 1K additional parameters.
arXiv Detail & Related papers (2023-11-28T11:23:34Z) - A local approach to parameter space reduction for regression and
classification tasks [0.0]
We propose a new method called local active subspaces (LAS), which explores the synergies of active subspaces with supervised clustering techniques.
LAS is particularly useful for the community working on surrogate modelling.
arXiv Detail & Related papers (2021-07-22T18:06:04Z) - Intrinsic Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning [52.624194343095304]
We argue that analyzing fine-tuning through the lens of intrinsic dimension provides us with empirical and theoretical intuitions.
We empirically show that common pre-trained models have a very low intrinsic dimension.
arXiv Detail & Related papers (2020-12-22T07:42:30Z) - Dimensionality Reduction of Movement Primitives in Parameter Space [34.16700176918835]
Movement primitives are an important policy class for real-world robotics.
The high dimensionality of their parametrization makes the policy optimization expensive both in terms of samples and computation.
We propose the application of dimensionality reduction in the parameter space, identifying principal movements.
arXiv Detail & Related papers (2020-02-26T16:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.