論文の概要: Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams
- arxiv url: http://arxiv.org/abs/2405.14750v1
- Date: Thu, 23 May 2024 16:17:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 13:56:49.029828
- Title: Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams
- Title(参考訳): HMIマグネティックグラムとインテンシティグラムを用いた残差網を用いた極端太陽フレア予測
- Authors: Juyoung Yun, Jungmin Shin,
- Abstract要約: HMI強度図とマグネティックグラムを用いた極端太陽フレアの予測手法を提案する。
強度図から太陽点を検出し、磁気グラムから磁場パッチを抽出することにより、極度のクラスフレアを分類するためにResidual Network(ResNet)を訓練する。
我々のモデルは高精度で、極端太陽フレアを予測し、宇宙天気予報を改善するための堅牢なツールを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Solar flares, especially C, M, and X class, pose significant risks to satellite operations, communication systems, and power grids. We present a novel approach for predicting extreme solar flares using HMI intensitygrams and magnetograms. By detecting sunspots from intensitygrams and extracting magnetic field patches from magnetograms, we train a Residual Network (ResNet) to classify extreme class flares. Our model demonstrates high accuracy, offering a robust tool for predicting extreme solar flares and improving space weather forecasting. Additionally, we show that HMI magnetograms provide more useful data for deep learning compared to other SDO AIA images by better capturing features critical for predicting flare magnitudes. This study underscores the importance of identifying magnetic fields in solar flare prediction, marking a significant advancement in solar activity prediction with practical implications for mitigating space weather impacts.
- Abstract(参考訳): 太陽フレア、特にC、M、Xクラスは、衛星の運用、通信システム、電力網に重大なリスクをもたらす。
HMI強度図とマグネティックグラムを用いた極端太陽フレアの予測手法を提案する。
強度図から太陽点を検出し、磁気グラムから磁場パッチを抽出することにより、極度のクラスフレアを分類するためにResidual Network(ResNet)を訓練する。
我々のモデルは高精度で、極端太陽フレアを予測し、宇宙天気予報を改善するための堅牢なツールを提供する。
さらに,HMIマグネティックグラムは,他のSDO AIA画像と比較して,フレアマグニチュードの予測に重要な特徴を捉えることにより,より有用な深層学習データを提供することを示した。
本研究は、太陽フレア予測における磁場の同定の重要性を強調し、太陽活動予測の顕著な進歩と、宇宙気象への影響を緩和するための実践的意味を明らかにした。
関連論文リスト
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution [0.0]
DDPM(Denoising Diffusion Probabilistic Models)を用いた画像と画像の変換による視線(LoS)磁気グラムの進化予測手法を提案する。
提案手法は,画像品質の「計算機科学メトリクス」と物理精度の「物理メトリクス」を組み合わせて,モデル性能の評価を行う。
その結果, DDPMは, 太陽磁場の動的範囲, 磁束, 活動領域の大きさなどの物理的特徴の維持に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-07-16T12:28:10Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
近似を行なわずに1秒で完全なBNS推論を行う機械学習フレームワークを提案する。
本手法は, (i) 合併前の正確な局所化を提供することにより, (i) 近似低遅延法と比較して, (ii) 局所化精度を$sim30%$で改善すること, (iii) 光度距離, 傾斜, 質量に関する詳細な情報を提供することにより, (i) マルチメーサの観測を向上する。
論文 参考訳(メタデータ) (2024-07-12T18:00:02Z) - Super-Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using SDO/HMI Data and an Attention-Aided Convolutional Neural Network [4.746722440828454]
太陽画像超解像のための注意支援畳み込みニューラルネットワーク(CNN)を提案する。
太陽・ヘリオスフェア天文台(SOHO)に搭載されたミッチェルソンドップラー・イメージラー(MDI)によって収集された太陽活動領域(AR)の視線磁図の質を高めることを目的として,SolarCNNと名付けられた手法を開発した。
実験結果から、SolarCNNは構造類似度指数測定(SSIM)、ピアソン相関係数(PCC)、ピーク信号-雑音比(PSNR)の観点からSOHO/MDI磁気グラムの品質を向上させることが示された。
論文 参考訳(メタデータ) (2024-03-27T06:58:01Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
我々は、新しいデータプロダクトの予測可能性を評価するために、一連の機械学習戦略を用いて、事後SEPイベントの予測を行う。
データ量の増大にもかかわらず、予測精度は 0.7 + 0.1 に達し、これはこれらのベンチマークに合致するが、公表されたベンチマークを超えない。
論文 参考訳(メタデータ) (2024-03-04T23:12:17Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - Solar Active Region Magnetogram Image Dataset for Studies of Space
Weather [0.0]
このデータセットには3つのソースからのデータが含まれており、太陽活動領域のSDOヘリオサイスミックおよび磁気画像(HMI)マグネティックグラムを提供する。
このデータセットは、磁気構造、時間の経過とともに進化し、太陽フレアとの関係に関する画像解析や太陽物理学の研究に有用である。
このデータセットは、太陽フレア予測研究のベンチマークデータセットとして機能する、太陽活動領域の一定サイズの画像の、最小限の処理されたユーザーデータセットである。
論文 参考訳(メタデータ) (2023-05-16T14:44:24Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - A Deep Learning Approach to Generating Photospheric Vector Magnetograms
of Solar Active Regions for SOHO/MDI Using SDO/HMI and BBSO Data [22.56276949415464]
我々は,SDO/HMIによるLOSマグネティックグラム,Bx,Byから,H-アルファ観測とともに学習するための新しい深層学習手法MagNetを提案する。
深層学習がSOHO/MDIのための太陽活動領域の球面ベクトル磁気図を生成するのはこれが初めてである。
論文 参考訳(メタデータ) (2022-11-04T06:21:32Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。