Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
- URL: http://arxiv.org/abs/2405.14762v3
- Date: Thu, 31 Oct 2024 12:46:43 GMT
- Title: Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
- Authors: Nicholas Gao, Stephan Günnemann,
- Abstract summary: Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
- Score: 58.130170155147205
- License:
- Abstract: Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost. Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently. Enforcing the permutation antisymmetry of electrons in such generalized neural wave functions remained challenging as existing methods require discrete orbital selection via non-learnable hand-crafted algorithms. This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules. We achieve this by relying on Pfaffians rather than Slater determinants. The Pfaffian allows us to enforce the antisymmetry on arbitrary electronic systems without any constraint on electronic spin configurations or molecular structure. Our empirical evaluation finds that a single neural Pfaffian calculates the ground state and ionization energies with chemical accuracy across various systems. On the TinyMol dataset, we outperform the `gold-standard' CCSD(T) CBS reference energies by 1.9m$E_h$ and reduce energy errors compared to previous generalized neural wave functions by up to an order of magnitude.
Related papers
- Machine learning one-dimensional spinless trapped fermionic systems with
neural-network quantum states [1.6606527887256322]
We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential.
We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction.
We find very different ground states depending on the sign of the interaction.
arXiv Detail & Related papers (2023-04-10T17:36:52Z) - A Self-Attention Ansatz for Ab-initio Quantum Chemistry [3.4161707164978137]
We present a novel neural network architecture using self-attention, the Wavefunction Transformer (Psiformer)
We show that the Psiformer can be used as a drop-in replacement for other neural networks, often dramatically improving the accuracy of the calculations.
This demonstrates that self-attention networks can learn complex quantum mechanical correlations between electrons, and are a promising route to reaching unprecedented accuracy in chemical calculations on larger systems.
arXiv Detail & Related papers (2022-11-24T15:38:55Z) - First principles physics-informed neural network for quantum
wavefunctions and eigenvalue surfaces [0.0]
We propose a neural network to discover parametric eigenvalue and eigenfunction surfaces of quantum systems.
We apply our method to solve the hydrogen molecular ion.
arXiv Detail & Related papers (2022-11-08T23:22:42Z) - $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks [107.86545461433616]
We propose permutation-equivariant architectures, on which a determinant Slater is applied to induce antisymmetry.
FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function.
We substitute the Slater with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N2)$.
arXiv Detail & Related papers (2022-05-26T07:44:54Z) - Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
Functions [2.61072980439312]
In this work, we combine a Graph Neural Network (GNN) with a neural wave function to simultaneously solve the Schr"odinger equation for multiple geometries via VMC.
Compared to existing state-of-the-art networks, our Potential Energy Surface Network (PESNet) speeds up training for multiple geometries by up to 40 times while matching or surpassing their accuracy.
arXiv Detail & Related papers (2021-10-11T07:58:31Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - SE(3)-equivariant prediction of molecular wavefunctions and electronic
densities [4.2572103161049055]
We introduce general SE(3)-equivariant operations and building blocks for constructing deep learning architectures for geometric point cloud data.
Our model reduces prediction errors by up to two orders of magnitude compared to the previous state-of-the-art.
We demonstrate the potential of our approach in a transfer learning application, where a model trained on low accuracy reference wavefunctions implicitly learns to correct for electronic many-body interactions.
arXiv Detail & Related papers (2021-06-04T08:57:46Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.