Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems
- URL: http://arxiv.org/abs/2504.06087v1
- Date: Tue, 08 Apr 2025 14:28:54 GMT
- Title: Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems
- Authors: Michael Scherbela, Nicholas Gao, Philipp Grohs, Stephan Günnemann,
- Abstract summary: We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.<n>FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.<n>We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
- Score: 52.19558333652367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present finite-range embeddings (FiRE), a novel wave function ansatz for accurate large-scale ab-initio electronic structure calculations. Compared to contemporary neural-network wave functions, FiRE reduces the asymptotic complexity of neural-network variational Monte Carlo (NN-VMC) by $\sim n_\text{el}$, the number of electrons. By restricting electron-electron interactions within the neural network, FiRE accelerates all key operations -- sampling, pseudopotentials, and Laplacian computations -- resulting in a real-world $10\times$ acceleration in now-feasible 180-electron calculations. We validate our method's accuracy on various challenging systems, including biochemical compounds, conjugated hydrocarbons, and organometallic compounds. On these systems, FiRE's energies are consistently within chemical accuracy of the most reliable data, including experiments, even in cases where high-accuracy methods such as CCSD(T), AFQMC, or contemporary NN-VMC fall short. With these improvements in both runtime and accuracy, FiRE represents a new `gold-standard' method for fast and accurate large-scale ab-initio calculations, potentially enabling new computational studies in fields like quantum chemistry, solid-state physics, and material design.
Related papers
- NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
arXiv Detail & Related papers (2024-11-23T23:09:22Z) - Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
Physics-Informed Neural Networks (PINNs) have emerged as an influential technology, merging the swift and automated capabilities of machine learning with the precision and dependability of simulations grounded in theoretical physics.
However, wide adoption of PINNs is still hindered by reliability issues, particularly at extreme ends of the input parameter ranges.
We propose a domain knowledge-based modifications to the PINN architecture ensuring its correct behavior.
arXiv Detail & Related papers (2024-11-15T08:55:31Z) - Machine learning Hubbard parameters with equivariant neural networks [0.0]
We present a machine learning model based on equivariant neural networks.
We target here the prediction of Hubbard parameters computed self-consistently with iterative linear-response calculations.
Our model achieves mean absolute relative errors of 3% and 5% for Hubbard $U$ and $V$ parameters, respectively.
arXiv Detail & Related papers (2024-06-04T16:21:24Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes [37.69303106863453]
We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers.
Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network.
arXiv Detail & Related papers (2023-04-21T20:49:29Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - A Self-Attention Ansatz for Ab-initio Quantum Chemistry [3.4161707164978137]
We present a novel neural network architecture using self-attention, the Wavefunction Transformer (Psiformer)
We show that the Psiformer can be used as a drop-in replacement for other neural networks, often dramatically improving the accuracy of the calculations.
This demonstrates that self-attention networks can learn complex quantum mechanical correlations between electrons, and are a promising route to reaching unprecedented accuracy in chemical calculations on larger systems.
arXiv Detail & Related papers (2022-11-24T15:38:55Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.