A Quantum Speed-Up for Approximating the Top Eigenvectors of a Matrix
- URL: http://arxiv.org/abs/2405.14765v1
- Date: Thu, 23 May 2024 16:33:13 GMT
- Title: A Quantum Speed-Up for Approximating the Top Eigenvectors of a Matrix
- Authors: Yanlin Chen, András Gilyén, Ronald de Wolf,
- Abstract summary: Finding a good approximation of the top eigenvector of a given $dtimes d$ matrix $A$ is a basic and important computational problem.
We give two different quantum algorithms that output a classical description of a good approximation of the top eigenvector.
- Score: 2.7050250604223693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding a good approximation of the top eigenvector of a given $d\times d$ matrix $A$ is a basic and important computational problem, with many applications. We give two different quantum algorithms that, given query access to the entries of a Hermitian matrix $A$ and assuming a constant eigenvalue gap, output a classical description of a good approximation of the top eigenvector: one algorithm with time complexity $\mathcal{\tilde{O}}(d^{1.75})$ and one with time complexity $d^{1.5+o(1)}$ (the first algorithm has a slightly better dependence on the $\ell_2$-error of the approximating vector than the second, and uses different techniques of independent interest). Both of our quantum algorithms provide a polynomial speed-up over the best-possible classical algorithm, which needs $\Omega(d^2)$ queries to entries of $A$, and hence $\Omega(d^2)$ time. We extend this to a quantum algorithm that outputs a classical description of the subspace spanned by the top-$q$ eigenvectors in time $qd^{1.5+o(1)}$. We also prove a nearly-optimal lower bound of $\tilde{\Omega}(d^{1.5})$ on the quantum query complexity of approximating the top eigenvector. Our quantum algorithms run a version of the classical power method that is robust to certain benign kinds of errors, where we implement each matrix-vector multiplication with small and well-behaved error on a quantum computer, in different ways for the two algorithms. Our first algorithm estimates the matrix-vector product one entry at a time, using a new ``Gaussian phase estimation'' procedure. Our second algorithm uses block-encoding techniques to compute the matrix-vector product as a quantum state, from which we obtain a classical description by a new time-efficient unbiased pure-state tomography procedure.
Related papers
- Quantum multi-row iteration algorithm for linear systems with non-square coefficient matrices [7.174256268278207]
We propose a quantum algorithm inspired by the classical multi-row iteration method.
Our algorithm places less demand on the coefficient matrix, making it suitable for solving inconsistent systems.
arXiv Detail & Related papers (2024-09-06T03:32:02Z) - Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
Gradient descent is one of the most basic algorithms for solving continuous optimization problems.
We propose a quantum algorithm that returns an $varepsilon$-approximation of its gradient with query complexity $widetildeO (1/varepsilon)$.
We also propose two quantum algorithms for Hessian estimation, aiming to improve quantum analogs of Newton's method.
arXiv Detail & Related papers (2024-07-04T11:03:48Z) - A square-root speedup for finding the smallest eigenvalue [0.6597195879147555]
We describe a quantum algorithm for finding the smallest eigenvalue of a Hermitian matrix.
This algorithm combines Quantum Phase Estimation and Quantum Amplitude Estimation to achieve a quadratic speedup.
We also provide a similar algorithm with the same runtime that allows us to prepare a quantum state lying mostly in the matrix's low-energy subspace.
arXiv Detail & Related papers (2023-11-07T22:52:56Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Fast and Practical Quantum-Inspired Classical Algorithms for Solving
Linear Systems [11.929584800629673]
We propose fast and practical quantum-inspired classical algorithms for solving linear systems.
Our main contribution is the application of the heavy ball momentum method to quantum-inspired classical algorithms for solving linear systems.
arXiv Detail & Related papers (2023-07-13T08:46:19Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Higher-order Derivatives of Weighted Finite-state Machines [68.43084108204741]
This work examines the computation of higher-order derivatives with respect to the normalization constant for weighted finite-state machines.
We provide a general algorithm for evaluating derivatives of all orders, which has not been previously described in the literature.
Our algorithm is significantly faster than prior algorithms.
arXiv Detail & Related papers (2021-06-01T19:51:55Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Hutch++: Optimal Stochastic Trace Estimation [75.45968495410048]
We introduce a new randomized algorithm, Hutch++, which computes a $(1 pm epsilon)$ approximation to $tr(A)$ for any positive semidefinite (PSD) $A$.
We show that it significantly outperforms Hutchinson's method in experiments.
arXiv Detail & Related papers (2020-10-19T16:45:37Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.