論文の概要: Evaluating Large Language Models for Public Health Classification and Extraction Tasks
- arxiv url: http://arxiv.org/abs/2405.14766v1
- Date: Thu, 23 May 2024 16:33:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 13:46:53.719916
- Title: Evaluating Large Language Models for Public Health Classification and Extraction Tasks
- Title(参考訳): 公衆衛生の分類・抽出課題における大規模言語モデルの評価
- Authors: Joshua Harris, Timothy Laurence, Leo Loman, Fan Grayson, Toby Nonnenmacher, Harry Long, Loes WalsGriffith, Amy Douglas, Holly Fountain, Stelios Georgiou, Jo Hardstaff, Kathryn Hopkins, Y-Ling Chi, Galena Kuyumdzhieva, Lesley Larkin, Samuel Collins, Hamish Mohammed, Thomas Finnie, Luke Hounsome, Steven Riley,
- Abstract要約: 本稿では,自由テキストの分類と抽出を含む公衆衛生業務におけるLarge Language Models(LLMs)の評価について述べる。
当初、ゼロショットインコンテキスト学習を用いて、全タスクにまたがる5つのオープンウェイトLCMを評価した。
LLMが公衆衛生の専門家にとって、様々な無料テキストソースから情報を抽出するのに有用なツールであることを示す有望な兆候を見出した。
- 参考スコア(独自算出の注目度): 0.3593941384437792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in Large Language Models (LLMs) have led to significant interest in their potential to support human experts across a range of domains, including public health. In this work we present automated evaluations of LLMs for public health tasks involving the classification and extraction of free text. We combine six externally annotated datasets with seven new internally annotated datasets to evaluate LLMs for processing text related to: health burden, epidemiological risk factors, and public health interventions. We initially evaluate five open-weight LLMs (7-70 billion parameters) across all tasks using zero-shot in-context learning. We find that Llama-3-70B-Instruct is the highest performing model, achieving the best results on 15/17 tasks (using micro-F1 scores). We see significant variation across tasks with all open-weight LLMs scoring below 60% micro-F1 on some challenging tasks, such as Contact Classification, while all LLMs achieve greater than 80% micro-F1 on others, such as GI Illness Classification. For a subset of 12 tasks, we also evaluate GPT-4 and find comparable results to Llama-3-70B-Instruct, which scores equally or outperforms GPT-4 on 6 of the 12 tasks. Overall, based on these initial results we find promising signs that LLMs may be useful tools for public health experts to extract information from a wide variety of free text sources, and support public health surveillance, research, and interventions.
- Abstract(参考訳): LLM(Large Language Models)の進歩は、公衆衛生を含む様々な分野において、人間の専門家を支援する可能性に大きな関心を惹き付けている。
本研究では,自由テキストの分類と抽出を含む公衆衛生業務におけるLCMの自動評価について述べる。
6つの外部注釈付きデータセットと7つの内部注釈付きデータセットを組み合わせることで、健康負担、疫学的リスクファクター、公衆衛生介入に関連するテキスト処理のためのLCMを評価する。
当初、ゼロショットインコンテキスト学習を用いて、全タスクで5つのオープンウェイト LLM (7~70億のパラメータ) を評価した。
Llama-3-70B-Instructは最高性能のモデルであり、15/17タスク(マイクロF1スコア)で最高の結果が得られる。
接触分類などの課題では,全オープンウェイト LLM が 60% micro-F1 以下であり,すべての LLM が GI Illness Classification など 80% micro-F1 以上を達成している。
12タスクのサブセットに対して、GPT-4の評価を行い、12タスクのうち6タスクでGPT-4のスコアが等しくまたは上回っているLlama-3-70B-Instructに匹敵する結果を得る。
全体として、これらの最初の結果に基づいて、公共衛生の専門家が様々な自由なテキストソースから情報を抽出し、公衆衛生監視、研究、介入を支援するのに、LCMが有用なツールであることを示す有望な兆候を見出した。
関連論文リスト
- Unveiling Performance Challenges of Large Language Models in Low-Resource Healthcare: A Demographic Fairness Perspective [7.1047384702030625]
我々は、6つの多様な医療タスクにまたがる3つの一般的な学習フレームワークを用いて、最先端の大規模言語モデル(LLM)を評価した。
LLMを現実の医療タスクに適用する上での重大な課題と、人口統計群全体での永続的公平性の問題を見出した。
論文 参考訳(メタデータ) (2024-11-30T18:52:30Z) - Leveraging Large Language Models for Medical Information Extraction and Query Generation [2.1793134762413433]
本稿では,大言語モデル(LLM)を臨床試験検索プロセスに統合するシステムを提案する。
クエリ生成には6つのLCMを評価し,最小限の計算資源を必要とする,オープンソースと比較的小さなモデルに着目した。
論文 参考訳(メタデータ) (2024-10-31T12:01:51Z) - Contextual Evaluation of Large Language Models for Classifying Tropical and Infectious Diseases [0.9798965031257411]
我々は、オープンソースの熱帯感染症(TRIND)データセットを構築し、11000以上のプロンプトを産出する人口統計学的、意味論的、消費者的増強を含むように拡張した。
一般のLSMと医学のLSMと、LSMの結果を人間の専門家と比較し、LSMのパフォーマンスを評価した。
本研究では, TRINDs-LMのプロトタイプを開発し, LLMが健康にどのような影響を及ぼすかを知るための遊び場を提供する。
論文 参考訳(メタデータ) (2024-09-13T21:28:54Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - D-NLP at SemEval-2024 Task 2: Evaluating Clinical Inference Capabilities of Large Language Models [5.439020425819001]
大規模言語モデル(LLM)は、様々なタスクにおける顕著なパフォーマンスのために、大きな注目を集め、広く使われている。
しかし、幻覚、事実的矛盾、数値的定量的推論の限界などの問題を含む、彼ら自身の課題は存在しない。
論文 参考訳(メタデータ) (2024-05-07T10:11:14Z) - Distilling Large Language Models for Matching Patients to Clinical
Trials [3.4068841624198942]
近年の大規模言語モデル(LLMs)の成功は、医療分野における彼らの採用の道を開いた。
本研究は,患者と臨床の整合性に対するプロプライエタリ (GPT-3.5, GPT-4) とオープンソース LLM (LLAMA 7B, 13B, 70B) の併用性について,最初の系統的検討を行った。
この制限された合成データセットを微調整したオープンソースのLLMは、プロプライエタリなデータセットと同等の性能を示した。
論文 参考訳(メタデータ) (2023-12-15T17:11:07Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Augmenting Black-box LLMs with Medical Textbooks for Biomedical Question Answering (Published in Findings of EMNLP 2024) [48.17095875619711]
LLMs Augmented with Medical Textbooks (LLM-AMT)を提案する。
LLM-AMTは、プラグイン・アンド・プレイモジュールを使用して、権威ある医学教科書をLLMのフレームワークに統合する。
検索コーパスとしての医学教科書は,医学領域におけるウィキペディアよりも効果的な知識データベースであることが確認された。
論文 参考訳(メタデータ) (2023-09-05T13:39:38Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
大型言語モデル(LLM)は、人間レベルの流布で自然言語の指示に従うことができる。
医療のための現実的なテキスト生成タスクにおけるLCMの評価は依然として困難である。
我々は、EHRデータのための983の自然言語命令のベンチマークデータセットであるMedAlignを紹介する。
論文 参考訳(メタデータ) (2023-08-27T12:24:39Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。