FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models
- URL: http://arxiv.org/abs/2405.14767v2
- Date: Mon, 27 May 2024 12:43:42 GMT
- Title: FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models
- Authors: Hongyang Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang, Likun Lin, Junlin Wang, Tianyu Zhou, Mao Guan, Runjia Zhang, Christina Dan Wang,
- Abstract summary: FinRobot is a novel open-source AI agent platform supporting multiple financially specialized AI agents.
FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis.
- Score: 16.814416170855147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As financial institutions and professionals increasingly incorporate Large Language Models (LLMs) into their workflows, substantial barriers, including proprietary data and specialized knowledge, persist between the finance sector and the AI community. These challenges impede the AI community's ability to enhance financial tasks effectively. Acknowledging financial analysis's critical role, we aim to devise financial-specialized LLM-based toolchains and democratize access to them through open-source initiatives, promoting wider AI adoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform supporting multiple financially specialized AI agents, each powered by LLM. Specifically, the platform consists of four major layers: 1) the Financial AI Agents layer that formulates Financial Chain-of-Thought (CoT) by breaking sophisticated financial problems down into logical sequences; 2) the Financial LLM Algorithms layer dynamically configures appropriate model application strategies for specific tasks; 3) the LLMOps and DataOps layer produces accurate models by applying training/fine-tuning techniques and using task-relevant data; 4) the Multi-source LLM Foundation Models layer that integrates various LLMs and enables the above layers to access them directly. Finally, FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis. We open-source FinRobot at \url{https://github.com/AI4Finance-Foundation/FinRobot}.
Related papers
- Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data.
We introduce textitOpen-FinLLMs, a series of Financial LLMs that embed comprehensive financial knowledge into text, tables, and time-series data.
We also present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
Large Language Models (LLMs) like ChatGPT have seen considerable advancements and have been applied in diverse fields.
These models are being utilized for automating financial report generation, forecasting market trends, analyzing investor sentiment, and offering personalized financial advice.
arXiv Detail & Related papers (2024-01-22T01:06:17Z) - Large Language Models in Finance: A Survey [12.243277149505364]
Large language models (LLMs) have opened new possibilities for artificial intelligence applications in finance.
Recent advances in large language models (LLMs) have opened new possibilities for artificial intelligence applications in finance.
arXiv Detail & Related papers (2023-09-28T06:04:04Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating human-like texts.
Financial Generative Pre-trained Transformer (FinGPT) automates the collection and curation of real-time financial data from 34 diverse sources on the Internet.
FinGPT aims to democratize FinLLMs, stimulate innovation, and unlock new opportunities in open finance.
arXiv Detail & Related papers (2023-07-19T22:43:57Z) - FinGPT: Open-Source Financial Large Language Models [20.49272722890324]
We present an open-source large language model, FinGPT, for the finance sector.
Unlike proprietary models, FinGPT takes a data-centric approach, providing researchers and practitioners with accessible and transparent resources.
We showcase several potential applications as stepping stones for users, such as robo-advising, algorithmic trading, and low-code development.
arXiv Detail & Related papers (2023-06-09T16:52:00Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.