FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment
- URL: http://arxiv.org/abs/2508.02292v1
- Date: Mon, 04 Aug 2025 11:02:34 GMT
- Title: FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment
- Authors: Wentao Zhang, Yilei Zhao, Chuqiao Zong, Xinrun Wang, Bo An,
- Abstract summary: FinWorld is an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow.<n>We conduct comprehensive experiments on 4 key financial AI tasks.
- Score: 33.436388581893944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~\footnote{https://github.com/DVampire/FinWorld}.
Related papers
- FinS-Pilot: A Benchmark for Online Financial System [17.65500174763836]
FinS-Pilot is a novel benchmark for evaluating large language models (RAGs) in online financial applications.<n>Our benchmark incorporates both real-time API data and structured text sources, organized through an intent classification framework.<n>Our work contributes both a practical evaluation framework and a curated dataset to advance research in financial NLP systems.
arXiv Detail & Related papers (2025-05-31T03:50:19Z) - FinMaster: A Holistic Benchmark for Mastering Full-Pipeline Financial Workflows with LLMs [15.230256296815565]
FinMaster is a benchmark designed to assess the capabilities of large language models (LLMs) in financial literacy, accounting, auditing, and consulting.<n>FinMaster comprises three main modules: FinSim, FinSuite, and FinEval.<n>Experiments reveal critical capability gaps in financial reasoning, with accuracy dropping from over 90% on basic tasks to merely 37% on complex scenarios.
arXiv Detail & Related papers (2025-05-18T11:47:55Z) - Fino1: On the Transferability of Reasoning-Enhanced LLMs and Reinforcement Learning to Finance [35.617409883103335]
FinReason is the first financial reasoning benchmark covering multi-table analysis, long-context reasoning, and equation-based tasks.<n>We introduce FinCoT, the first open high-fidelity CoT corpus for finance, distilled from seven QA datasets.<n>We develop Fin-o1, the first open financial reasoning models trained via supervised fine-tuning and GRPO-based RL.
arXiv Detail & Related papers (2025-02-12T05:13:04Z) - Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [88.96861155804935]
We introduce textitOpen-FinLLMs, the first open-source multimodal financial LLMs.<n>FinLLaMA is pre-trained on a comprehensive 52-billion-token corpus; FinLLaMA-Instruct, fine-tuned with 573K financial instructions; and FinLLaVA, enhanced with 1.43M multimodal tuning pairs.<n>We evaluate Open-FinLLMs across 14 financial tasks, 30 datasets, and 4 multimodal tasks in zero-shot, few-shot, and supervised fine-tuning settings.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models [16.814416170855147]
FinRobot is a novel open-source AI agent platform supporting multiple financially specialized AI agents.
FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis.
arXiv Detail & Related papers (2024-05-23T16:35:20Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating human-like texts.
Financial Generative Pre-trained Transformer (FinGPT) automates the collection and curation of real-time financial data from 34 diverse sources on the Internet.
FinGPT aims to democratize FinLLMs, stimulate innovation, and unlock new opportunities in open finance.
arXiv Detail & Related papers (2023-07-19T22:43:57Z) - FinGPT: Open-Source Financial Large Language Models [20.49272722890324]
We present an open-source large language model, FinGPT, for the finance sector.
Unlike proprietary models, FinGPT takes a data-centric approach, providing researchers and practitioners with accessible and transparent resources.
We showcase several potential applications as stepping stones for users, such as robo-advising, algorithmic trading, and low-code development.
arXiv Detail & Related papers (2023-06-09T16:52:00Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - Dynamic Datasets and Market Environments for Financial Reinforcement
Learning [68.11692837240756]
FinRL-Meta is a library that processes dynamic datasets from real-world markets into gym-style market environments.
We provide examples and reproduce popular research papers as stepping stones for users to design new trading strategies.
We also deploy the library on cloud platforms so that users can visualize their own results and assess the relative performance.
arXiv Detail & Related papers (2023-04-25T22:17:31Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
We focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents.
We propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts.
The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge.
arXiv Detail & Related papers (2021-09-01T00:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.