Metric Flow Matching for Smooth Interpolations on the Data Manifold
- URL: http://arxiv.org/abs/2405.14780v2
- Date: Mon, 04 Nov 2024 10:02:49 GMT
- Title: Metric Flow Matching for Smooth Interpolations on the Data Manifold
- Authors: Kacper Kapuśniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein, Avishek Joey Bose, Francesco Di Giovanni,
- Abstract summary: Metric Flow Matching (MFM) is a novel simulation-free framework for conditional flow matching.
We propose MFM as a framework for conditional paths that transform a source distribution into a target distribution.
We test MFM on a suite of challenges including LiDAR navigation, unpaired image translation, and modeling cellular dynamics.
- Score: 40.24392451848883
- License:
- Abstract: Matching objectives underpin the success of modern generative models and rely on constructing conditional paths that transform a source distribution into a target distribution. Despite being a fundamental building block, conditional paths have been designed principally under the assumption of Euclidean geometry, resulting in straight interpolations. However, this can be particularly restrictive for tasks such as trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture the underlying dynamics giving rise to the observed marginals. In this paper, we propose Metric Flow Matching (MFM), a novel simulation-free framework for conditional flow matching where interpolants are approximate geodesics learned by minimizing the kinetic energy of a data-induced Riemannian metric. This way, the generative model matches vector fields on the data manifold, which corresponds to lower uncertainty and more meaningful interpolations. We prescribe general metrics to instantiate MFM, independent of the task, and test it on a suite of challenging problems including LiDAR navigation, unpaired image translation, and modeling cellular dynamics. We observe that MFM outperforms the Euclidean baselines, particularly achieving SOTA on single-cell trajectory prediction.
Related papers
- DFM: Interpolant-free Dual Flow Matching [0.8192907805418583]
We propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field.
Experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives.
arXiv Detail & Related papers (2024-10-11T20:46:04Z) - Categorical Flow Matching on Statistical Manifolds [12.646272756981672]
We introduce a flow-matching framework on the manifold of parameterized probability measures inspired by information geometry.
We develop an efficient training and sampling algorithm that overcomes numerical stability with a diffeomorphism between manifold.
We manifest that SFM can learn more complex patterns on the statistical manifold where existing models often fail due to strong prior assumptions.
arXiv Detail & Related papers (2024-05-26T05:50:39Z) - Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
We propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold.
The model shows a better capacity for generating diverse trajectory patterns.
We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories.
arXiv Detail & Related papers (2024-02-19T15:48:55Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Flow Matching on General Geometries [43.252817099263744]
We propose a simple yet powerful framework for training continuous normalizing flows on manifold geometries.
We show that it is simulation-free on simple geometries, does not require divergence, and computes its target vector field in closed-form.
Our method achieves state-of-the-art performance on many real-world non-Euclidean datasets.
arXiv Detail & Related papers (2023-02-07T18:21:24Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Tractable Density Estimation on Learned Manifolds with Conformal
Embedding Flows [0.0]
Normalizing flows provide tractable density estimation by transforming a simple base distribution into a complex target distribution.
Recent attempts to remedy this have introduced geometric complications that defeat a central benefit of normalizing flows: exact density estimation.
We argue that composing a standard flow with a trainable conformal embedding is the most natural way to model manifold-supported data.
arXiv Detail & Related papers (2021-06-09T18:00:00Z) - Uniform Interpolation Constrained Geodesic Learning on Data Manifold [28.509561636926414]
Along the learned geodesic, our method can generate high-qualitys between two given data samples.
We provide a theoretical analysis of our model and use image translation as an example to demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2020-02-12T07:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.