論文の概要: Unified Neural Backdoor Removal with Only Few Clean Samples through Unlearning and Relearning
- arxiv url: http://arxiv.org/abs/2405.14781v2
- Date: Tue, 24 Jun 2025 07:35:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.22518
- Title: Unified Neural Backdoor Removal with Only Few Clean Samples through Unlearning and Relearning
- Title(参考訳): 未学習と再学習によるクリーンサンプルの少ない統一型ニューラルバックドア除去
- Authors: Nay Myat Min, Long H. Pham, Jun Sun,
- Abstract要約: ULRL(UnLearn and ReLearn for backdoor removal)を提案する。
提案手法はまず,ネットワークの損失を小さなクリーンデータセット上で意図的に最大化する未学習フェーズを用いる。
再学習段階では、これらの疑わしいニューロンは、標的の再初期化とコサイン類似性規則化を用いて再分類される。
- 参考スコア(独自算出の注目度): 4.623498459985644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have achieved remarkable success across various applications; however, their vulnerability to backdoor attacks poses severe security risks -- especially in situations where only a limited set of clean samples is available for defense. In this work, we address this critical challenge by proposing ULRL (UnLearn and ReLearn for backdoor removal), a novel two-phase approach for comprehensive backdoor removal. Our method first employs an unlearning phase, in which the network's loss is intentionally maximized on a small clean dataset to expose neurons that are excessively sensitive to backdoor triggers. Subsequently, in the relearning phase, these suspicious neurons are recalibrated using targeted reinitialization and cosine similarity regularization, effectively neutralizing backdoor influences while preserving the model's performance on benign data. Extensive experiments with 12 backdoor types on multiple datasets (CIFAR-10, CIFAR-100, GTSRB, and Tiny-ImageNet) and architectures (PreAct-ResNet18, VGG19-BN, and ViT-B-16) demonstrate that ULRL significantly reduces the attack success rate without compromising clean accuracy -- even when only 1% of clean data is used for defense.
- Abstract(参考訳): ディープニューラルネットワークは様々なアプリケーションで顕著な成功を収めていますが、バックドア攻撃に対する脆弱性は深刻なセキュリティリスクを引き起こします。
本研究では,ULRL (UnLearn and ReLearn for backdoor removal)を提案することで,この課題に対処する。
提案手法ではまず,ネットワークの損失を小さなクリーンデータセット上で意図的に最大化し,バックドアトリガに過度に敏感なニューロンを露出する未学習フェーズを用いる。
その後、これらの疑わしいニューロンは、ターゲットの再初期化とコサイン類似性規則化を用いて再校正され、良性データ上でモデルの性能を維持しつつ、バックドアの影響を効果的に中和する。
複数のデータセット (CIFAR-10, CIFAR-100, GTSRB, Tiny-ImageNet) とアーキテクチャ (PreAct-ResNet18, VGG19-BN, ViT-B-16) 上の12種類のバックドアタイプによる大規模な実験は、ULRLがクリーンな精度を損なうことなく、攻撃の成功率を著しく低下させることを示した。
関連論文リスト
- Neural Antidote: Class-Wise Prompt Tuning for Purifying Backdoors in Pre-trained Vision-Language Models [42.81731204702258]
CBPT(Class-wise Backdoor Prompt Tuning)は、テキストプロンプトによって間接的に汚染された視覚言語モデル(VLM)を浄化する効率的な方法である。
CBPTは、7つの主要なバックドア攻撃に対して平均的クリーン精度(CA)58.86%、アタック成功率(ASR)0.39%のモデルユーティリティを維持しながら、バックドアの脅威を著しく軽減する。
論文 参考訳(メタデータ) (2025-02-26T16:25:15Z) - ELBA-Bench: An Efficient Learning Backdoor Attacks Benchmark for Large Language Models [55.93380086403591]
生成可能な大規模言語モデルは、バックドアアタックに対して脆弱である。
$textitELBA-Bench$は、パラメータを効率的に微調整することで攻撃者がバックドアを注入できるようにする。
$textitELBA-Bench$は1300以上の実験を提供する。
論文 参考訳(メタデータ) (2025-02-22T12:55:28Z) - Neutralizing Backdoors through Information Conflicts for Large Language Models [20.6331157117675]
大規模言語モデル(LLM)からバックドアの挙動を除去する新しい手法を提案する。
軽量なデータセットを使用してコンフリクトモデルをトレーニングし、バックドアモデルとマージして悪意のある振る舞いを中和します。
我々は、90%以上のクリーンデータ精度を維持しながら、高度なバックドア攻撃の攻撃成功率を最大98%削減することができる。
論文 参考訳(メタデータ) (2024-11-27T12:15:22Z) - "No Matter What You Do": Purifying GNN Models via Backdoor Unlearning [33.07926413485209]
GNNのバックドア攻撃は、攻撃者がトリガーを埋め込むことでグラフデータの一部を修正したという事実にある。
GNNにおける最初のバックドア緩和手法であるGCleanerを提案する。
GCleanerは、クリーンデータのわずか1%でバックドア攻撃の成功率を10%に下げることができ、ほぼ無視できるモデル性能の低下がある。
論文 参考訳(メタデータ) (2024-10-02T06:30:49Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Reconstructive Neuron Pruning for Backdoor Defense [96.21882565556072]
本稿では, バックドアニューロンの露出とプルーンの抑制を目的とした, emphReconstructive Neuron Pruning (RNP) という新しい防御法を提案する。
RNPでは、アンラーニングはニューロンレベルで行われ、リカバリはフィルタレベルで行われ、非対称再構成学習手順を形成する。
このような非対称なプロセスは、少数のクリーンサンプルだけが、広範囲の攻撃によって移植されたバックドアニューロンを効果的に露出し、刺激することができることを示す。
論文 参考訳(メタデータ) (2023-05-24T08:29:30Z) - Enhancing Fine-Tuning Based Backdoor Defense with Sharpness-Aware
Minimization [27.964431092997504]
良性データに基づく微調整は、バックドアモデルにおけるバックドア効果を消去するための自然な防御である。
本研究では, バックドア関連ニューロンのノルムを小さくするために, 微調整によるシャープネス認識最小化を取り入れた新しいバックドア防御パラダイムFTSAMを提案する。
論文 参考訳(メタデータ) (2023-04-24T05:13:52Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
バックドア攻撃とも呼ばれるディープニューラルネットワークに対するトロイの木馬攻撃は、人工知能に対する典型的な脅威である。
FreeEagleは、複雑なバックドア攻撃を効果的に検出できる最初のデータフリーバックドア検出方法である。
論文 参考訳(メタデータ) (2023-02-28T11:31:29Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
本稿では,モデル構造の角度からバックドア機構を探索する。
攻撃成功率 (ASR) は, キースキップ接続の出力を減少させると著しく低下することを示した。
論文 参考訳(メタデータ) (2022-11-02T15:39:19Z) - Verifying Neural Networks Against Backdoor Attacks [7.5033553032683855]
特定のニューラルネットワークが一定の成功率でバックドアのないかどうかを検証するためのアプローチを提案する。
実験結果から,バックドアの欠如やバックドアのトリガの発生を効果的に検証できることが示唆された。
論文 参考訳(メタデータ) (2022-05-14T07:25:54Z) - Few-shot Backdoor Defense Using Shapley Estimation [123.56934991060788]
我々は、深層ニューラルネットワークに対するバックドア攻撃を軽減するために、Shapley Pruningと呼ばれる新しいアプローチを開発した。
ShapPruningは、感染した数少ないニューロン(全ニューロンの1%以下)を特定し、モデルの構造と正確性を保護する。
様々な攻撃やタスクに対して,本手法の有効性とロバスト性を示す実験を行った。
論文 参考訳(メタデータ) (2021-12-30T02:27:03Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。