Quadrupolar resonance spectroscopy of individual nuclei using a room-temperature quantum sensor
- URL: http://arxiv.org/abs/2405.14859v1
- Date: Thu, 23 May 2024 17:58:48 GMT
- Title: Quadrupolar resonance spectroscopy of individual nuclei using a room-temperature quantum sensor
- Authors: S. Alex Breitweiser, Mathieu Ouellet, Tzu-Yung Huang, Tim H. Taminiau, Lee C. Bassett,
- Abstract summary: Nuclear quadrupolar resonance (NQR) spectroscopy reveals chemical bonding patterns in materials and molecules.
Traditional NQR techniques require macroscopic ensembles of nuclei to yield a detectable signal.
Optically active electronic spin qubits, such as the nitrogen-vacancy (NV) center in diamond, facilitate the detection and control of individual nuclei.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Nuclear quadrupolar resonance (NQR) spectroscopy reveals chemical bonding patterns in materials and molecules through the unique coupling between nuclear spins and local fields. However, traditional NQR techniques require macroscopic ensembles of nuclei to yield a detectable signal, which precludes the study of individual molecules and obscures molecule-to-molecule variations due to local perturbations or deformations. Optically active electronic spin qubits, such as the nitrogen-vacancy (NV) center in diamond, facilitate the detection and control of individual nuclei through their local magnetic couplings. Here, we use NV centers to perform NQR spectroscopy on their associated nitrogen-14 ($^{14}$N) nuclei at room temperature. In mapping the nuclear quadrupolar Hamiltonian, we resolve minute variations between individual nuclei. The measurements further reveal correlations between the parameters in the NV center's electronic spin Hamiltonian and the $^{14}$N quadropolar Hamiltonian, as well as a previously unreported Hamiltonian term that results from symmetry breaking. We further design pulse sequences to initialize, readout, and control the quantum evolution of the $^{14}$N nuclear state using the nuclear quadrupolar Hamiltonian.
Related papers
- Multidimensional spectroscopy of nuclear spin clusters in diamond [0.29320870573989144]
We report techniques to improve localization and mapping of the testbed $13mathrmC$ nuclear spin environment.
We use multidimensional spectroscopy, well-known from classical NMR, in combination with weak measurements of single-nuclear-spin precession.
arXiv Detail & Related papers (2024-03-04T15:18:02Z) - Spin decoherence in VOPc@graphene nanoribbon complexes [5.691318972818067]
Carbon nanoribbon or nanographene qubit arrays can facilitate quantum-to-quantum transduction between light, charge, and spin.
We study spin decoherence due to coupling with a surrounding nuclear spin bath of an electronic molecular spin of a vanadyl phthalocyanine (VOPc) molecule integrated on an armchair-edged graphene nanoribbon (GNR)
We find that the decoherence time $T$ is anisotropic with respect to magnetic field orientation and determined only by nuclear spins on VOPc and GNR.
arXiv Detail & Related papers (2023-07-31T04:55:05Z) - Quantum Heterodyne Sensing of Nuclear Spins via Double Resonance [0.0]
A heterodyne approach is widely used to overcome the electron spin lifetime limit in spectral resolution.
This work paves the way towards high field nanoscale heterodyne NMR protocols with NV centres.
arXiv Detail & Related papers (2022-05-20T13:48:59Z) - Nuclei with up to $\boldsymbol{A=6}$ nucleons with artificial neural
network wave functions [52.77024349608834]
We use artificial neural networks to compactly represent the wave functions of nuclei.
We benchmark their binding energies, point-nucleon densities, and radii with the highly accurate hyperspherical harmonics method.
arXiv Detail & Related papers (2021-08-15T23:02:39Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Detection and control of single proton spins in a thin layer of diamond
grown by chemical vapor deposition [0.19573380763700707]
We report detection and coherent control of a single proton nuclear spin using an electronic spin of the nitrogen-vacancy center in diamond as a quantum sensor.
In addition to determining the NV-proton hyperfine parameters, we polarize and coherently rotate the single proton spin, and detect an induced free precession.
arXiv Detail & Related papers (2020-06-14T01:29:55Z) - Resolving single molecule structures with nitrogen-vacancy centers in diamond [0.8192907805418583]
We present theoretical proposals for two-dimensional nuclear magnetic resonance spectroscopy protocols based on Nitrogen-vacancy (NV) centers in diamond.
We employ a singular value thresholding matrix completion algorithm to further reduce the amount of data required to permit the identification of key features in the spectra of strongly sub-sampled data.
arXiv Detail & Related papers (2014-07-23T15:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.