Video Diffusion Models are Training-free Motion Interpreter and Controller
- URL: http://arxiv.org/abs/2405.14864v3
- Date: Tue, 12 Nov 2024 01:31:41 GMT
- Title: Video Diffusion Models are Training-free Motion Interpreter and Controller
- Authors: Zeqi Xiao, Yifan Zhou, Shuai Yang, Xingang Pan,
- Abstract summary: This paper introduces a novel perspective to understand, localize, and manipulate motion-aware features in video diffusion models.
We present a new MOtion FeaTure (MOFT) by eliminating content correlation information and filtering motion channels.
- Score: 20.361790608772157
- License:
- Abstract: Video generation primarily aims to model authentic and customized motion across frames, making understanding and controlling the motion a crucial topic. Most diffusion-based studies on video motion focus on motion customization with training-based paradigms, which, however, demands substantial training resources and necessitates retraining for diverse models. Crucially, these approaches do not explore how video diffusion models encode cross-frame motion information in their features, lacking interpretability and transparency in their effectiveness. To answer this question, this paper introduces a novel perspective to understand, localize, and manipulate motion-aware features in video diffusion models. Through analysis using Principal Component Analysis (PCA), our work discloses that robust motion-aware feature already exists in video diffusion models. We present a new MOtion FeaTure (MOFT) by eliminating content correlation information and filtering motion channels. MOFT provides a distinct set of benefits, including the ability to encode comprehensive motion information with clear interpretability, extraction without the need for training, and generalizability across diverse architectures. Leveraging MOFT, we propose a novel training-free video motion control framework. Our method demonstrates competitive performance in generating natural and faithful motion, providing architecture-agnostic insights and applicability in a variety of downstream tasks.
Related papers
- MotionCom: Automatic and Motion-Aware Image Composition with LLM and Video Diffusion Prior [51.672193627686]
MotionCom is a training-free motion-aware diffusion based image composition.
It enables seamless integration of target objects into new scenes with dynamically coherent results.
arXiv Detail & Related papers (2024-09-16T08:44:17Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.
SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.
Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
We introduce Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs.
SMCD incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions.
Our design significantly enhances video quality, motion precision, and semantic coherence.
arXiv Detail & Related papers (2024-03-15T10:36:24Z) - Customizing Motion in Text-to-Video Diffusion Models [79.4121510826141]
We introduce an approach for augmenting text-to-video generation models with customized motions.
By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios.
arXiv Detail & Related papers (2023-12-07T18:59:03Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
We propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control.
A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects.
generated video sequences by our TrackDiffusion can be used as training data for visual perception models.
arXiv Detail & Related papers (2023-12-01T15:24:38Z) - Motion-Conditioned Diffusion Model for Controllable Video Synthesis [75.367816656045]
We introduce MCDiff, a conditional diffusion model that generates a video from a starting image frame and a set of strokes.
We show that MCDiff achieves the state-the-art visual quality in stroke-guided controllable video synthesis.
arXiv Detail & Related papers (2023-04-27T17:59:32Z) - Self-Supervised Video Representation Learning with Motion-Contrastive
Perception [13.860736711747284]
Motion-Contrastive Perception Network (MCPNet)
MCPNet consists of two branches, namely, Motion Information Perception (MIP) and Contrastive Instance Perception (CIP)
Our method outperforms current state-of-the-art visual-only self-supervised approaches.
arXiv Detail & Related papers (2022-04-10T05:34:46Z) - MotionSqueeze: Neural Motion Feature Learning for Video Understanding [46.82376603090792]
Motion plays a crucial role in understanding videos and most state-of-the-art neural models for video classification incorporate motion information.
In this work, we replace external and heavy computation of optical flows with internal and light-weight learning of motion features.
We demonstrate that the proposed method provides a significant gain on four standard benchmarks for action recognition with only a small amount of additional cost.
arXiv Detail & Related papers (2020-07-20T08:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.