論文の概要: BiMix: Bivariate Data Mixing Law for Language Model Pretraining
- arxiv url: http://arxiv.org/abs/2405.14908v3
- Date: Tue, 15 Oct 2024 03:40:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:02.310385
- Title: BiMix: Bivariate Data Mixing Law for Language Model Pretraining
- Title(参考訳): BiMix: 言語モデル事前学習のための二変量混合法
- Authors: Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, Bolin Ding,
- Abstract要約: 事前学習データ構成がモデル性能に与える影響はいまだよく分かっていない。
$textbfBiMix$は、データの混合を理解し、最適化するための体系的なフレームワークを提供する。
我々の研究は、データミキシングの力学に関する理論的知見と、LLMトレーニング効率を向上させるための実践的なツールの両方に貢献する。
- 参考スコア(独自算出の注目度): 47.77701041534746
- License:
- Abstract: Large language models have demonstrated remarkable capabilities across various tasks, primarily attributed to the utilization of diversely sourced data. However, the impact of pretraining data composition on model performance remains poorly understood. This paper introduces $\textbf{BiMix}$, a novel bivariate data mixing law that models the joint scaling behavior of domain proportions and data volume in LLM pretraining. $\textbf{BiMix}$ provides a systematic framework for understanding and optimizing data mixtures across diverse domains. Through extensive experiments on two large-scale datasets, we demonstrate $\textbf{BiMix}$'s high accuracy in loss extrapolation (mean relative error < 0.2%) and its generalization to unseen mixtures (R${}^{2}$ > 0.97). Optimization of domain proportions yields superior model performance compared to existing methods. Furthermore, we establish entropy-based measures as efficient proxies for data mixing, offering a computationally lightweight strategy. Our work contributes both theoretical insights into data mixing dynamics and practical tools for enhancing LLM training efficiency, paving the way for more effective scaling strategies in language model development.
- Abstract(参考訳): 大規模言語モデルは様々なタスクにまたがって顕著な能力を示してきた。
しかし、事前学習データ構成がモデル性能に与える影響はよく分かっていない。
本稿では, LLM事前学習における領域比例とデータボリュームの合同スケーリング挙動をモデル化した新しい二変量混合法である$\textbf{BiMix}$を紹介する。
$\textbf{BiMix}$は、さまざまなドメインにわたるデータの混合を理解し、最適化するための体系的なフレームワークを提供する。
2つの大規模データセットに関する広範な実験を通じて、損失補間における$\textbf{BiMix}$の高精度な精度(平均相対誤差<0.2%)と、目に見えない混合物への一般化(R${}^{2}$ > 0.97)を実証した。
ドメイン比の最適化は、既存の手法よりも優れたモデル性能をもたらす。
さらに、エントロピーに基づく測度をデータ混合の効率的なプロキシとして確立し、計算学的に軽量な戦略を提供する。
我々の研究は、データミキシングのダイナミクスに関する理論的知見と、LLMトレーニングの効率を高めるための実践的なツールの両方に貢献し、言語モデル開発におけるより効果的なスケーリング戦略の道を開いた。
関連論文リスト
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
既存のリウェイト戦略は主にグループレベルのデータの重要性に焦点を当てている。
動的・インスタンスレベルのデータ再重み付けのための新しいアルゴリズムを提案する。
当社のフレームワークでは,冗長データや非形式データを優先的に再重み付けする戦略を考案することが可能です。
論文 参考訳(メタデータ) (2025-02-10T17:57:15Z) - DUET: Optimizing Training Data Mixtures via Feedback from Unseen Evaluation Tasks [40.91931801667421]
本稿では,ベイズ最適化を用いたデータ選択手法を組み込むことで,フィードバックループを活用できるDUETという,グローバル・ローカルなアルゴリズムを提案する。
その結果、DUETは、データドメインのプールから混合したトレーニングデータを効率よく洗練し、目に見えない評価タスクにおけるモデルの性能を最大化することができる。
論文 参考訳(メタデータ) (2025-02-01T01:52:32Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
大規模な言語モデルは、高品質なトレーニングデータの増加によって改善される。
トークンカウントは手動と学習の混合よりも優れており、データセットのサイズと多様性に対する単純なアプローチが驚くほど効果的であることを示している。
UtiliMaxは,手動ベースラインよりも最大10.6倍のスピードアップを達成することで,トークンベースの200ドルを拡大する。また,LLMを活用して小さなサンプルからデータユーティリティを推定するモデル推定データユーティリティ(MEDU)は,計算要求を$simxで削減し,アブレーションベースのパフォーマンスに適合する。
論文 参考訳(メタデータ) (2025-01-20T21:10:22Z) - AutoScale: Automatic Prediction of Compute-optimal Data Composition for Training LLMs [61.13296177652599]
本稿では,異なる領域からのトレーニングデータの最適構成がスケール依存であることを示す。
我々は、潜在的に大規模なトレーニングデータスケールでデータ合成を最適化するための、新しい実用的なアプローチである*AutoScale*を紹介します。
GPT-2Large and BERT pre-training の評価は,トレーニング収束性および下流性能向上における *AutoScale* の有効性を示す。
論文 参考訳(メタデータ) (2024-07-29T17:06:30Z) - Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance [55.872926690722714]
本研究では,関数形式の混合比に関するモデル性能の予測可能性について検討する。
トレーニングステップのスケーリング法則,モデルサイズ,データ混合法則のネスト利用を提案する。
提案手法は,RedPajamaにおける100Bトークンをトレーニングした1Bモデルのトレーニング混合物を効果的に最適化する。
論文 参考訳(メタデータ) (2024-03-25T17:14:00Z) - TiMix: Text-aware Image Mixing for Effective Vision-Language
Pre-training [42.142924806184425]
クロスモーダルなコントラスト学習のための混合データサンプルは、暗黙的にコントラスト損失のレギュレータとして機能する。
TiMixは、既存のメソッドに対してベンチマークした場合、トレーニングデータの量が減り、トレーニング時間が短縮された場合でも、ダウンストリームタスクで同等のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-12-14T12:02:24Z) - Mixed Semi-Supervised Generalized-Linear-Regression with Applications to Deep-Learning and Interpolators [6.537685198688539]
本稿では、ラベルのないデータを用いて、半教師付き学習法(SSL)を設計する手法を提案する。
それぞれに$alpha$という混合パラメータが含まれており、ラベルのないデータに与えられる重みを制御する。
我々は,標準教師付きモデルと比較して,大幅な改善を実現するための方法論の有効性を実証する。
論文 参考訳(メタデータ) (2023-02-19T09:55:18Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。