Agentic Skill Discovery
- URL: http://arxiv.org/abs/2405.15019v1
- Date: Thu, 23 May 2024 19:44:03 GMT
- Title: Agentic Skill Discovery
- Authors: Xufeng Zhao, Cornelius Weber, Stefan Wermter,
- Abstract summary: Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models to low-level robotic control.
A remaining challenge is to acquire a diverse set of fundamental skills.
Existing approaches either manually decompose a complex task into atomic robotic actions in a top-down fashion, or bootstrap as many combinations as possible in a bottom-up fashion to cover a wider range of task possibilities.
We show that starting with zero skill, the ASD skill library emerges and expands to more and more meaningful and reliable skills.
- Score: 19.5703917813767
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models (LLMs) to low-level robotic control. A remaining challenge is to acquire a diverse set of fundamental skills. Existing approaches either manually decompose a complex task into atomic robotic actions in a top-down fashion, or bootstrap as many combinations as possible in a bottom-up fashion to cover a wider range of task possibilities. These decompositions or combinations, however, require an initial skill library. For example, a "grasping" capability can never emerge from a skill library containing only diverse "pushing" skills. Existing skill discovery techniques with reinforcement learning acquire skills by an exhaustive exploration but often yield non-meaningful behaviors. In this study, we introduce a novel framework for skill discovery that is entirely driven by LLMs. The framework begins with an LLM generating task proposals based on the provided scene description and the robot's configurations, aiming to incrementally acquire new skills upon task completion. For each proposed task, a series of reinforcement learning processes are initiated, utilizing reward and success determination functions sampled by the LLM to develop the corresponding policy. The reliability and trustworthiness of learned behaviors are further ensured by an independent vision-language model. We show that starting with zero skill, the ASD skill library emerges and expands to more and more meaningful and reliable skills, enabling the robot to efficiently further propose and complete advanced tasks. The project page can be found at: https://agentic-skill-discovery.github.io.
Related papers
- Unsupervised Skill Discovery for Robotic Manipulation through Automatic Task Generation [17.222197596599685]
We propose a Skill Learning approach that discovers composable behaviors by solving a large number of autonomously generated tasks.
Our method learns skills allowing the robot to consistently and robustly interact with objects in its environment.
The learned skills can be used to solve a set of unseen manipulation tasks, in simulation as well as on a real robotic platform.
arXiv Detail & Related papers (2024-10-07T09:19:13Z) - SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution [75.2573501625811]
Diffusion models have demonstrated strong potential for robotic trajectory planning.
generating coherent trajectories from high-level instructions remains challenging.
We propose SkillDiffuser, an end-to-end hierarchical planning framework.
arXiv Detail & Related papers (2023-12-18T18:16:52Z) - Bootstrap Your Own Skills: Learning to Solve New Tasks with Large
Language Model Guidance [66.615355754712]
BOSS learns to accomplish new tasks by performing "skill bootstrapping"
We demonstrate through experiments in realistic household environments that agents trained with our LLM-guided bootstrapping procedure outperform those trained with naive bootstrapping.
arXiv Detail & Related papers (2023-10-16T02:43:47Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
We introduce Active Task Randomization (ATR), an approach that learns robust skills through the unsupervised generation of training tasks.
ATR selects suitable tasks, which consist of an initial environment state and manipulation goal, for learning robust skills by balancing the diversity and feasibility of the tasks.
We demonstrate that the learned skills can be composed by a task planner to solve unseen sequential manipulation problems based on visual inputs.
arXiv Detail & Related papers (2022-11-11T11:24:55Z) - Residual Skill Policies: Learning an Adaptable Skill-based Action Space
for Reinforcement Learning for Robotics [18.546688182454236]
Skill-based reinforcement learning (RL) has emerged as a promising strategy to leverage prior knowledge for accelerated robot learning.
We propose accelerating exploration in the skill space using state-conditioned generative models.
We validate our approach across four challenging manipulation tasks, demonstrating our ability to learn across task variations.
arXiv Detail & Related papers (2022-11-04T02:42:17Z) - Hierarchical Skills for Efficient Exploration [70.62309286348057]
In reinforcement learning, pre-trained low-level skills have the potential to greatly facilitate exploration.
Prior knowledge of the downstream task is required to strike the right balance between generality (fine-grained control) and specificity (faster learning) in skill design.
We propose a hierarchical skill learning framework that acquires skills of varying complexity in an unsupervised manner.
arXiv Detail & Related papers (2021-10-20T22:29:32Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
We tackle real-world long-horizon robot manipulation tasks through skill discovery.
We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations.
Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks.
arXiv Detail & Related papers (2021-09-28T16:18:54Z) - Example-Driven Model-Based Reinforcement Learning for Solving
Long-Horizon Visuomotor Tasks [85.56153200251713]
We introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks.
On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate.
arXiv Detail & Related papers (2021-09-21T16:48:07Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
We propose a method to discover generalizable skills via automated generation of a diverse set of tasks.
As opposed to prior work on unsupervised discovery of skills, our method pairs each skill with a unique task produced by a trainable task generator.
A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective.
The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks.
arXiv Detail & Related papers (2021-06-26T03:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.