論文の概要: A Survey of Distributed Learning in Cloud, Mobile, and Edge Settings
- arxiv url: http://arxiv.org/abs/2405.15079v1
- Date: Thu, 23 May 2024 22:00:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 18:48:01.404748
- Title: A Survey of Distributed Learning in Cloud, Mobile, and Edge Settings
- Title(参考訳): クラウド,モバイル,エッジ設定における分散学習に関する調査
- Authors: Madison Threadgill, Andreas Gerstlauer,
- Abstract要約: この調査では、クラウドとエッジ設定を含む分散学習の状況について調査する。
データとモデルの並列性という中核的な概念を掘り下げて、モデルをさまざまな次元と層に分割して、リソースの利用とパフォーマンスを最適化する方法を調べます。
計算効率,通信オーバヘッド,メモリ制約のトレードオフを浮き彫りにして,完全接続層,畳み込み層,繰り返し層など,さまざまなレイヤタイプに対するパーティショニング方式を解析する。
- 参考スコア(独自算出の注目度): 1.0589208420411014
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the era of deep learning (DL), convolutional neural networks (CNNs), and large language models (LLMs), machine learning (ML) models are becoming increasingly complex, demanding significant computational resources for both inference and training stages. To address this challenge, distributed learning has emerged as a crucial approach, employing parallelization across various devices and environments. This survey explores the landscape of distributed learning, encompassing cloud and edge settings. We delve into the core concepts of data and model parallelism, examining how models are partitioned across different dimensions and layers to optimize resource utilization and performance. We analyze various partitioning schemes for different layer types, including fully connected, convolutional, and recurrent layers, highlighting the trade-offs between computational efficiency, communication overhead, and memory constraints. This survey provides valuable insights for future research and development in this rapidly evolving field by comparing and contrasting distributed learning approaches across diverse contexts.
- Abstract(参考訳): ディープラーニング(DL)や畳み込みニューラルネットワーク(CNN)、大規模言語モデル(LLM)の時代には、マシンラーニング(ML)モデルはますます複雑化しており、推論とトレーニング段階の両方において重要な計算資源を必要としている。
この課題に対処するため、分散学習は、さまざまなデバイスや環境に並列化を導入し、重要なアプローチとして登場した。
この調査では、クラウドとエッジ設定を含む分散学習の状況について調査する。
データとモデルの並列性という中核的な概念を掘り下げて、モデルをさまざまな次元と層に分割して、リソースの利用とパフォーマンスを最適化する方法を調べます。
計算効率,通信オーバヘッド,メモリ制約のトレードオフを浮き彫りにして,完全接続層,畳み込み層,繰り返し層など,さまざまなレイヤタイプに対するパーティショニング方式を解析する。
この調査は、様々な文脈で分散学習アプローチを比較し、対比することによって、この急速に発展する分野における将来の研究と開発に有用な洞察を提供する。
関連論文リスト
- Performance Modeling and Workload Analysis of Distributed Large Language Model Training and Inference [2.2231908139555734]
本稿では,分散LLMトレーニングと推論の一般的な性能モデリング手法とワークロード解析を提案する。
文献や関連業界ベンダ(NVIDIAなど)の公開データによるパフォーマンス予測を検証する。
論文 参考訳(メタデータ) (2024-07-19T19:49:05Z) - Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey [43.57122822150023]
本稿では,大規模分散ディープラーニングにおける効率的なコミュニケーションの実現を目的とした,アルゴリズムと技術に関する文献調査を行う。
まず,大規模分散学習の文脈において,モデル同期と通信データ圧縮のための効率的なアルゴリズムを導入する。
次に、分散トレーニングおよび推論におけるリソース割り当てとタスクスケジューリングに関する効率的な戦略を導入する。
論文 参考訳(メタデータ) (2024-04-09T08:35:04Z) - Deep Metric Learning for Computer Vision: A Brief Overview [4.980117530293724]
深層ニューラルネットワークを最適化する目的関数は、入力データの強化された特徴表現を作成する上で重要な役割を果たす。
Deep Metric Learningは、データサンプル間の類似度を測定する方法の開発を目指している。
本稿では、この領域における最近の進歩の概要と最先端のDeep Metric Learningアプローチについて論じる。
論文 参考訳(メタデータ) (2023-12-01T21:53:36Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
本稿では,視覚制御タスクの学習を効率的に行うために,Wild 動画を多用した事前学習型世界モデルの課題について検討する。
本稿では、コンテキストと動的モデリングを明確に分離したContextualized World Models(ContextWM)を紹介する。
実験により,ContextWMを内蔵したWildビデオ事前学習は,モデルベース強化学習のサンプル効率を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-05-29T14:29:12Z) - Adaptive Parameterization of Deep Learning Models for Federated Learning [85.82002651944254]
Federated Learningは、分散形式でディープニューラルネットワークをトレーニングする方法を提供する。
トレーニング中にモデルパラメータや勾配を定期的に交換する必要があるため、通信オーバーヘッドが発生する。
本稿では,フェデレートラーニングのための並列適応器を提案する。
論文 参考訳(メタデータ) (2023-02-06T17:30:33Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Flexible Parallel Learning in Edge Scenarios: Communication,
Computational and Energy Cost [20.508003076947848]
FogとIoTベースのシナリオでは、両方のアプローチを組み合わせる必要があることが多い。
フレキシブル並列学習(FPL)のためのフレームワークを提案し,データとモデル並列性を両立させる。
我々の実験は、最先端のディープネットワークアーキテクチャと大規模データセットを用いて行われ、FPLが計算コスト、通信オーバーヘッド、学習性能に優れたトレードオフを実現することを確認した。
論文 参考訳(メタデータ) (2022-01-19T03:47:04Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Distributed Training of Deep Learning Models: A Taxonomic Perspective [11.924058430461216]
分散ディープラーニングシステム(DDLS)は、クラスタの分散リソースを利用することで、ディープニューラルネットワークモデルをトレーニングする。
私たちは、独立したマシンのクラスタでディープニューラルネットワークをトレーニングする際の、作業の基本原則に光を当てることを目指しています。
論文 参考訳(メタデータ) (2020-07-08T08:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。