Music Genre Classification: Training an AI model
- URL: http://arxiv.org/abs/2405.15096v1
- Date: Thu, 23 May 2024 23:07:01 GMT
- Title: Music Genre Classification: Training an AI model
- Authors: Keoikantse Mogonediwa,
- Abstract summary: Music genre classification is an area that utilizes machine learning models and techniques for the processing of audio signals.
In this research I explore various machine learning algorithms for the purpose of music genre classification, using features extracted from audio signals.
I aim to asses the robustness of machine learning models for genre classification, and to compare their results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Music genre classification is an area that utilizes machine learning models and techniques for the processing of audio signals, in which applications range from content recommendation systems to music recommendation systems. In this research I explore various machine learning algorithms for the purpose of music genre classification, using features extracted from audio signals.The systems are namely, a Multilayer Perceptron (built from scratch), a k-Nearest Neighbours (also built from scratch), a Convolutional Neural Network and lastly a Random Forest wide model. In order to process the audio signals, feature extraction methods such as Short-Time Fourier Transform, and the extraction of Mel Cepstral Coefficients (MFCCs), is performed. Through this extensive research, I aim to asses the robustness of machine learning models for genre classification, and to compare their results.
Related papers
- Improving Musical Instrument Classification with Advanced Machine Learning Techniques [0.0]
Recent advances in machine learning, specifically deep learning, have enhanced the capability to identify and classify musical instruments from audio signals.
This study applies various machine learning methods, including Naive Bayes, Support Vector Machines, Random Forests, Boosting techniques like AdaBoost and XGBoost.
The effectiveness of these methods is evaluated on the N Synth dataset, a large repository of annotated musical sounds.
arXiv Detail & Related papers (2024-11-01T00:13:46Z) - Audio Processing using Pattern Recognition for Music Genre Classification [0.0]
This project explores the application of machine learning techniques for music genre classification using the GTZAN dataset.
Motivated by the growing demand for personalized music recommendations, we focused on classifying five genres-Blues, Classical, Jazz, Hip Hop, and Country.
The ANN model demonstrated the best performance, achieving a validation accuracy of 92.44%.
arXiv Detail & Related papers (2024-10-19T05:44:05Z) - Music Genre Classification using Large Language Models [50.750620612351284]
This paper exploits the zero-shot capabilities of pre-trained large language models (LLMs) for music genre classification.
The proposed approach splits audio signals into 20 ms chunks and processes them through convolutional feature encoders.
During inference, predictions on individual chunks are aggregated for a final genre classification.
arXiv Detail & Related papers (2024-10-10T19:17:56Z) - Music Genre Classification: A Comparative Analysis of CNN and XGBoost
Approaches with Mel-frequency cepstral coefficients and Mel Spectrograms [0.0]
This study investigates the performances of three models: a proposed convolutional neural network (CNN), the VGG16 with fully connected layers (FC), and an eXtreme Gradient Boosting (XGBoost) approach on different features.
The results show that the MFCC XGBoost model outperformed the others. Furthermore, applying data segmentation in the data preprocessing phase can significantly enhance the performance of the CNNs.
arXiv Detail & Related papers (2024-01-09T01:50:31Z) - Music Genre Classification with ResNet and Bi-GRU Using Visual
Spectrograms [4.354842354272412]
The limitations of manual genre classification have highlighted the need for a more advanced system.
Traditional machine learning techniques have shown potential in genre classification, but fail to capture the full complexity of music data.
This study proposes a novel approach using visual spectrograms as input, and propose a hybrid model that combines the strength of the Residual neural Network (ResNet) and the Gated Recurrent Unit (GRU)
arXiv Detail & Related papers (2023-07-20T11:10:06Z) - Audio classification using ML methods [2.132096006921048]
The code shows how to extract features from audio files and classify them using supervised learning into 2 genres namely classical and metal.
Algorithms used are LogisticRegression, SVC using different kernals (linear, sigmoid, rbf and poly), KNeighborsClassifier and DecisionTreeClassifier.
arXiv Detail & Related papers (2023-05-30T15:42:13Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - A framework to compare music generative models using automatic
evaluation metrics extended to rhythm [69.2737664640826]
This paper takes the framework proposed in a previous research that did not consider rhythm to make a series of design decisions, then, rhythm support is added to evaluate the performance of two RNN memory cells in the creation of monophonic music.
The model considers the handling of music transposition and the framework evaluates the quality of the generated pieces using automatic quantitative metrics based on geometry which have rhythm support added as well.
arXiv Detail & Related papers (2021-01-19T15:04:46Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
This paper evaluates different types of memory mechanisms (memory cells) and analyses their performance in the field of music composition.
A set of quantitative metrics is presented to evaluate the performance of the proposed architecture automatically.
arXiv Detail & Related papers (2020-12-02T14:19:19Z) - Fast accuracy estimation of deep learning based multi-class musical
source separation [79.10962538141445]
We propose a method to evaluate the separability of instruments in any dataset without training and tuning a neural network.
Based on the oracle principle with an ideal ratio mask, our approach is an excellent proxy to estimate the separation performances of state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-10-19T13:05:08Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
This paper presents a deep reinforcement learning algorithm for online accompaniment generation.
The proposed algorithm is able to respond to the human part and generate a melodic, harmonic and diverse machine part.
arXiv Detail & Related papers (2020-02-08T03:53:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.