論文の概要: Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding
- arxiv url: http://arxiv.org/abs/2405.15097v1
- Date: Thu, 23 May 2024 23:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 18:48:01.371659
- Title: Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding
- Title(参考訳): 音声言語理解におけるニューラルノイズチャネルモデルのコントラスト学習と一貫性学習
- Authors: Suyoung Kim, Jiyeon Hwang, Ho-Young Jung,
- Abstract要約: 音声認識(ASR)に基づく自然言語理解手法を提案する。
ASRエラーによる書き起こしの不整合を処理するため,ノイズチャネルモデルの改良を行った。
4つのベンチマークデータセットの実験は、Contrastive and Consistency Learning (CCL)が既存のメソッドより優れていることを示している。
- 参考スコア(独自算出の注目度): 1.07288078404291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, deep end-to-end learning has been studied for intent classification in Spoken Language Understanding (SLU). However, end-to-end models require a large amount of speech data with intent labels, and highly optimized models are generally sensitive to the inconsistency between the training and evaluation conditions. Therefore, a natural language understanding approach based on Automatic Speech Recognition (ASR) remains attractive because it can utilize a pre-trained general language model and adapt to the mismatch of the speech input environment. Using this module-based approach, we improve a noisy-channel model to handle transcription inconsistencies caused by ASR errors. We propose a two-stage method, Contrastive and Consistency Learning (CCL), that correlates error patterns between clean and noisy ASR transcripts and emphasizes the consistency of the latent features of the two transcripts. Experiments on four benchmark datasets show that CCL outperforms existing methods and improves the ASR robustness in various noisy environments. Code is available at https://github.com/syoung7388/CCL.
- Abstract(参考訳): 近年,Spoken Language Understanding (SLU) において,意図的分類のための深いエンドツーエンド学習が研究されている。
しかし、エンドツーエンドモデルは意図ラベルを持つ大量の音声データを必要とし、高度に最適化されたモデルは一般に訓練と評価条件の不整合に敏感である。
そこで,ASR(Automatic Speech Recognition)に基づく自然言語理解手法は,事前学習された汎用言語モデルを利用して,音声入力環境のミスマッチに適応できるため,依然として魅力的である。
このモジュールベースのアプローチを用いることで、ASRエラーによる転写の不整合を処理するため、ノイズチャネルモデルを改善する。
クリーンかつノイズの多いASRテキスト間のエラーパターンを相関付け,2つのテキストの潜在的特徴の一貫性を強調する2段階の手法であるContrastive and Consistency Learning (CCL)を提案する。
4つのベンチマークデータセットの実験により、CCLは既存の手法より優れ、様々なノイズ環境下でのASRロバスト性を改善することが示された。
コードはhttps://github.com/syoung7388/CCLで入手できる。
関連論文リスト
- ML-LMCL: Mutual Learning and Large-Margin Contrastive Learning for
Improving ASR Robustness in Spoken Language Understanding [55.39105863825107]
本稿では,ML-LMCL(Multual Learning and Large-Margin Contrastive Learning)を提案する。
微調整では、相互学習を適用し、手書き文字とASR文字の2つのSLUモデルを訓練する。
3つのデータセットの実験では、ML-LMCLは既存のモデルより優れ、新しい最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-19T16:53:35Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Improving the Intent Classification accuracy in Noisy Environment [9.447108578893639]
本稿では,エンド・ツー・エンドのニューラルモデルを用いた意図分類課題に対して,環境騒音とその関連ノイズ低減手法について検討する。
この課題に対して,音声強調処理を用いることで,雑音条件下での分類精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-03-12T06:11:44Z) - Supervision-Guided Codebooks for Masked Prediction in Speech
Pre-training [102.14558233502514]
自己教師型学習(SSL)における事前学習のマズード予測は,音声認識における顕著な進歩をみせている。
本稿では,自動音声認識(ASR)の性能向上のための2つの教師付きコードブック生成手法を提案する。
論文 参考訳(メタデータ) (2022-06-21T06:08:30Z) - A Novel Speech Intelligibility Enhancement Model based on
CanonicalCorrelation and Deep Learning [12.913738983870621]
完全畳み込みニューラルネットワーク(FCN)モデルをトレーニングするために,正準相関に基づく短時間客観的インテリジェンス(CC-STOI)コスト関数を提案する。
CC-STOIに基づく音声強調フレームワークは、従来の距離ベースおよびSTOIに基づく損失関数で訓練された最先端のDLモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:48:41Z) - Self-Supervised Learning for speech recognition with Intermediate layer
supervision [52.93758711230248]
自己教師付き学習(ILS-SSL)のための中間層スーパービジョンを提案する。
ILS-SSLは、中間層にSSL損失を追加することで、可能な限りコンテンツ情報に集中させます。
LibriSpeech の他のテストセットの実験により,本手法は HuBERT を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-12-16T10:45:05Z) - Pre-training for Spoken Language Understanding with Joint Textual and
Phonetic Representation Learning [4.327558819000435]
音声表現を学習するための新しいテキスト音声前訓練手法を提案する。
音声言語理解ベンチマークであるFluent Speech CommandsとSNIPSの実験結果から,提案手法は強いベースラインモデルよりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2021-04-21T05:19:13Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
既存のモデルはクリーンデータに基づいてトレーニングされ、クリーンデータトレーニングと現実世界の推論の間にtextitgapが発生する。
本稿では,良質なサンプルと低品質のサンプルの両方が類似ベクトル空間に埋め込まれた領域適応法を提案する。
広く使用されているデータセット、スニップス、および大規模な社内データセット(1000万のトレーニング例)に関する実験では、この方法は実世界の(騒々しい)コーパスのベースラインモデルを上回るだけでなく、堅牢性、すなわち、騒々しい環境下で高品質の結果を生み出すことを実証しています。
論文 参考訳(メタデータ) (2021-04-13T17:54:33Z) - An Approach to Improve Robustness of NLP Systems against ASR Errors [39.57253455717825]
音声対応システムは通常、音声を自動音声認識モデルを介してテキストに変換し、テキストを下流の自然言語処理モジュールに供給します。
ASRシステムのエラーは、NLPモジュールの性能を著しく低下させる可能性がある。
これまでの研究では、トレーニングプロセス中にasrノイズを注入することにより、この問題を解決するためにデータ拡張手法を用いることが有効であることが示されている。
論文 参考訳(メタデータ) (2021-03-25T05:15:43Z) - End-to-end speech-to-dialog-act recognition [38.58540444573232]
本稿では,音声を直接ダイアログに変換するエンド・ツー・エンドのモデルを提案する。
提案モデルでは,対話行動認識ネットワークは,その潜在層において,音声から単語へのASRモデルと結合する。
ネットワーク全体がエンドツーエンドで微調整されている。
論文 参考訳(メタデータ) (2020-04-23T18:44:27Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。