Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding
- URL: http://arxiv.org/abs/2405.15097v1
- Date: Thu, 23 May 2024 23:10:23 GMT
- Title: Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding
- Authors: Suyoung Kim, Jiyeon Hwang, Ho-Young Jung,
- Abstract summary: We propose a natural language understanding approach based on Automatic Speech Recognition (ASR)
We improve a noisy-channel model to handle transcription inconsistencies caused by ASR errors.
Experiments on four benchmark datasets show that Contrastive and Consistency Learning (CCL) outperforms existing methods.
- Score: 1.07288078404291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, deep end-to-end learning has been studied for intent classification in Spoken Language Understanding (SLU). However, end-to-end models require a large amount of speech data with intent labels, and highly optimized models are generally sensitive to the inconsistency between the training and evaluation conditions. Therefore, a natural language understanding approach based on Automatic Speech Recognition (ASR) remains attractive because it can utilize a pre-trained general language model and adapt to the mismatch of the speech input environment. Using this module-based approach, we improve a noisy-channel model to handle transcription inconsistencies caused by ASR errors. We propose a two-stage method, Contrastive and Consistency Learning (CCL), that correlates error patterns between clean and noisy ASR transcripts and emphasizes the consistency of the latent features of the two transcripts. Experiments on four benchmark datasets show that CCL outperforms existing methods and improves the ASR robustness in various noisy environments. Code is available at https://github.com/syoung7388/CCL.
Related papers
- ML-LMCL: Mutual Learning and Large-Margin Contrastive Learning for
Improving ASR Robustness in Spoken Language Understanding [55.39105863825107]
We propose Mutual Learning and Large-Margin Contrastive Learning (ML-LMCL) to improve automatic speech recognition (ASR) robustness.
In fine-tuning, we apply mutual learning and train two SLU models on the manual transcripts and the ASR transcripts, respectively.
Experiments on three datasets show that ML-LMCL outperforms existing models and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2023-11-19T16:53:35Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
Conceptually, LOCCO can be viewed as a form of self-learning where the semantic being trained is used to generate annotations for unlabeled text.
As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model.
arXiv Detail & Related papers (2023-05-31T16:47:20Z) - Improving the Intent Classification accuracy in Noisy Environment [9.447108578893639]
In this paper, we investigate how environmental noise and related noise reduction techniques to address the intent classification task with end-to-end neural models.
For this task, the use of speech enhancement greatly improves the classification accuracy in noisy conditions.
arXiv Detail & Related papers (2023-03-12T06:11:44Z) - Supervision-Guided Codebooks for Masked Prediction in Speech
Pre-training [102.14558233502514]
Masked prediction pre-training has seen remarkable progress in self-supervised learning (SSL) for speech recognition.
We propose two supervision-guided codebook generation approaches to improve automatic speech recognition (ASR) performance.
arXiv Detail & Related papers (2022-06-21T06:08:30Z) - A Novel Speech Intelligibility Enhancement Model based on
CanonicalCorrelation and Deep Learning [12.913738983870621]
We present a canonical correlation based short-time objective intelligibility (CC-STOI) cost function to train a fully convolutional neural network (FCN) model.
We show that our CC-STOI based speech enhancement framework outperforms state-of-the-art DL models trained with conventional distance-based and STOI-based loss functions.
arXiv Detail & Related papers (2022-02-11T16:48:41Z) - Self-Supervised Learning for speech recognition with Intermediate layer
supervision [52.93758711230248]
We propose Intermediate Layer Supervision for Self-Supervised Learning (ILS-SSL)
ILS-SSL forces the model to concentrate on content information as much as possible by adding an additional SSL loss on the intermediate layers.
Experiments on LibriSpeech test-other set show that our method outperforms HuBERT significantly.
arXiv Detail & Related papers (2021-12-16T10:45:05Z) - Pre-training for Spoken Language Understanding with Joint Textual and
Phonetic Representation Learning [4.327558819000435]
We propose a novel joint textual-phonetic pre-training approach for learning spoken language representations.
Experimental results on spoken language understanding benchmarks, Fluent Speech Commands and SNIPS, show that the proposed approach significantly outperforms strong baseline models.
arXiv Detail & Related papers (2021-04-21T05:19:13Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - An Approach to Improve Robustness of NLP Systems against ASR Errors [39.57253455717825]
Speech-enabled systems typically first convert audio to text through an automatic speech recognition model and then feed the text to downstream natural language processing modules.
The errors of the ASR system can seriously downgrade the performance of the NLP modules.
Previous work has shown it is effective to employ data augmentation methods to solve this problem by injecting ASR noise during the training process.
arXiv Detail & Related papers (2021-03-25T05:15:43Z) - End-to-end speech-to-dialog-act recognition [38.58540444573232]
We present an end-to-end model which directly converts speech into dialog acts without the deterministic transcription process.
In the proposed model, the dialog act recognition network is conjunct with an acoustic-to-word ASR model at its latent layer.
The entire network is fine-tuned in an end-to-end manner.
arXiv Detail & Related papers (2020-04-23T18:44:27Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.