Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
- URL: http://arxiv.org/abs/2507.02407v1
- Date: Thu, 03 Jul 2025 08:01:26 GMT
- Title: Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
- Authors: Mark Atta Mensah, Isaac Wiafe, Akon Ekpezu, Justice Kwame Appati, Jamal-Deen Abdulai, Akosua Nyarkoa Wiafe-Akenten, Frank Ernest Yeboah, Gifty Odame,
- Abstract summary: This study benchmarks seven Akan automatic speech recognition (ASR) models built on transformer architectures.<n>It shows distinct error behaviors between the Whisper and Wav2Vec2 architectures.<n>These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
Related papers
- Customizing Speech Recognition Model with Large Language Model Feedback [5.290365603660415]
We propose a reinforcement learning based approach for unsupervised domain adaptation.<n>We leverage unlabeled data to enhance transcription quality, particularly the named entities affected by domain mismatch.<n>Our method achieves a 21% improvement on entity word error rate over conventional self-training methods.
arXiv Detail & Related papers (2025-06-05T18:42:57Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Contextual Biasing to Improve Domain-specific Custom Vocabulary Audio Transcription without Explicit Fine-Tuning of Whisper Model [0.0]
OpenAI's Whisper Automated Speech Recognition model excels in generalizing across diverse datasets and domains.
We propose a method to enhance transcription accuracy without explicit fine-tuning or altering model parameters.
arXiv Detail & Related papers (2024-10-24T01:58:11Z) - Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding [1.07288078404291]
We propose a natural language understanding approach based on Automatic Speech Recognition (ASR)
We improve a noisy-channel model to handle transcription inconsistencies caused by ASR errors.
Experiments on four benchmark datasets show that Contrastive and Consistency Learning (CCL) outperforms existing methods.
arXiv Detail & Related papers (2024-05-23T23:10:23Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
We introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction.
The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses.
LLMs with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list.
arXiv Detail & Related papers (2023-09-27T14:44:10Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Rationale-Guided Few-Shot Classification to Detect Abusive Language [5.977278650516324]
We propose RGFS (Rationale-Guided Few-Shot Classification) for abusive language detection.
We introduce two rationale-integrated BERT-based architectures (the RGFS models) and evaluate our systems over five different abusive language datasets.
arXiv Detail & Related papers (2022-11-30T14:47:14Z) - Explaining Cross-Domain Recognition with Interpretable Deep Classifier [100.63114424262234]
Interpretable Deep (IDC) learns the nearest source samples of a target sample as evidence upon which the classifier makes the decision.
Our IDC leads to a more explainable model with almost no accuracy degradation and effectively calibrates classification for optimum reject options.
arXiv Detail & Related papers (2022-11-15T15:58:56Z) - ASR in German: A Detailed Error Analysis [0.0]
This work presents a selection of ASR model architectures that are pretrained on the German language and evaluates them on a benchmark of diverse test datasets.
It identifies cross-architectural prediction errors, classifies those into categories and traces the sources of errors per category back into training data.
arXiv Detail & Related papers (2022-04-12T08:25:01Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.