Efficient Biomedical Entity Linking: Clinical Text Standardization with Low-Resource Techniques
- URL: http://arxiv.org/abs/2405.15134v2
- Date: Mon, 27 May 2024 01:36:38 GMT
- Title: Efficient Biomedical Entity Linking: Clinical Text Standardization with Low-Resource Techniques
- Authors: Akshit Achara, Sanand Sasidharan, Gagan N,
- Abstract summary: Multiple terms can refer to the same core concepts which can be referred as a clinical entity.
Ontologies like the Unified Medical Language System (UMLS) are developed and maintained to store millions of clinical entities.
We propose a suite of context-based and context-less remention techniques for performing the entity disambiguation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical text is rich in information, with mentions of treatment, medication and anatomy among many other clinical terms. Multiple terms can refer to the same core concepts which can be referred as a clinical entity. Ontologies like the Unified Medical Language System (UMLS) are developed and maintained to store millions of clinical entities including the definitions, relations and other corresponding information. These ontologies are used for standardization of clinical text by normalizing varying surface forms of a clinical term through Biomedical entity linking. With the introduction of transformer-based language models, there has been significant progress in Biomedical entity linking. In this work, we focus on learning through synonym pairs associated with the entities. As compared to the existing approaches, our approach significantly reduces the training data and resource consumption. Moreover, we propose a suite of context-based and context-less reranking techniques for performing the entity disambiguation. Overall, we achieve similar performance to the state-of-the-art zero-shot and distant supervised entity linking techniques on the Medmentions dataset, the largest annotated dataset on UMLS, without any domain-based training. Finally, we show that retrieval performance alone might not be sufficient as an evaluation metric and introduce an article level quantitative and qualitative analysis to reveal further insights on the performance of entity linking methods.
Related papers
- ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish [39.81302995670643]
This study presents ClinLinker, a novel approach employing a two-phase pipeline for medical entity linking.
It is based on a SapBERT-based bi-encoder and subsequent re-ranking with a cross-encoder, trained by following a contrastive-learning strategy to be tailored to medical concepts in Spanish.
arXiv Detail & Related papers (2024-04-09T15:04:27Z) - Semantic Textual Similarity Assessment in Chest X-ray Reports Using a
Domain-Specific Cosine-Based Metric [1.7802147489386628]
We introduce a novel approach designed specifically for assessing the semantic similarity between generated medical reports and the ground truth.
Our approach is validated, demonstrating its efficiency in assessing domain-specific semantic similarity within medical contexts.
arXiv Detail & Related papers (2024-02-19T07:48:25Z) - MED-SE: Medical Entity Definition-based Sentence Embedding [1.0828616610785524]
We propose a novel unsupervised contrastive learning framework designed for clinical texts, which exploits the definitions of medical entities.
In the entity-centric setting that we have designed, MED-SE achieves significantly better performance, while the existing unsupervised methods including SimCSE show degraded performance.
arXiv Detail & Related papers (2022-12-09T09:10:19Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
This paper introduces the technique of contextualized word embedding to better capture the semantic meaning of each word based on its context.
We pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair)
Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
arXiv Detail & Related papers (2021-06-23T18:12:58Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Drug and Disease Interpretation Learning with Biomedical Entity
Representation Transformer [9.152161078854146]
Concept normalization in free-form texts is a crucial step in every text-mining pipeline.
We propose a simple and effective two-stage neural approach based on fine-tuned BERT architectures.
arXiv Detail & Related papers (2021-01-22T20:01:25Z) - A Practical Approach towards Causality Mining in Clinical Text using
Active Transfer Learning [2.6125458645126907]
Causality mining is an active research area, which requires the application of state-of-the-art natural language processing techniques.
This research work is to create a framework, which can convert clinical text into causal knowledge.
arXiv Detail & Related papers (2020-12-10T06:51:13Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
We introduce UmlsBERT, a contextual embedding model that integrates domain knowledge during the pre-training process.
By applying these two strategies, UmlsBERT can encode clinical domain knowledge into word embeddings and outperform existing domain-specific models.
arXiv Detail & Related papers (2020-10-20T15:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.