A Solution-based LLM API-using Methodology for Academic Information Seeking
- URL: http://arxiv.org/abs/2405.15165v1
- Date: Fri, 24 May 2024 02:44:14 GMT
- Title: A Solution-based LLM API-using Methodology for Academic Information Seeking
- Authors: Yuanchun Wang, Jifan Yu, Zijun Yao, Jing Zhang, Yuyang Xie, Shangqing Tu, Yiyang Fu, Youhe Feng, Jinkai Zhang, Jingyao Zhang, Bowen Huang, Yuanyao Li, Huihui Yuan, Lei Hou, Juanzi Li, Jie Tang,
- Abstract summary: SoAy is a solution-based LLM API-using methodology for academic information seeking.
It uses code with a solution as the reasoning method, where a solution is a pre-constructed API calling sequence.
Results show a 34.58-75.99% performance improvement compared to state-of-the-art LLM API-based baselines.
- Score: 49.096714812902576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Applying large language models (LLMs) for academic API usage shows promise in reducing researchers' academic information seeking efforts. However, current LLM API-using methods struggle with complex API coupling commonly encountered in academic queries. To address this, we introduce SoAy, a solution-based LLM API-using methodology for academic information seeking. It uses code with a solution as the reasoning method, where a solution is a pre-constructed API calling sequence. The addition of the solution reduces the difficulty for the model to understand the complex relationships between APIs. Code improves the efficiency of reasoning. To evaluate SoAy, we introduce SoAyBench, an evaluation benchmark accompanied by SoAyEval, built upon a cloned environment of APIs from AMiner. Experimental results demonstrate a 34.58-75.99\% performance improvement compared to state-of-the-art LLM API-based baselines. All datasets, codes, tuned models, and deployed online services are publicly accessible at https://github.com/RUCKBReasoning/SoAy.
Related papers
- Reinforcement Learning for Long-Horizon Interactive LLM Agents [56.9860859585028]
Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests.
We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments.
We derive LOOP, a data- and memory-efficient variant of proximal policy optimization.
arXiv Detail & Related papers (2025-02-03T18:35:42Z) - Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models [49.214291813478695]
Deep learning (DL) libraries, widely used in AI applications, often contain vulnerabilities like overflows and use buffer-free errors.
Traditional fuzzing struggles with the complexity and API diversity of DL libraries.
We propose DFUZZ, an LLM-driven fuzzing approach for DL libraries.
arXiv Detail & Related papers (2025-01-08T07:07:22Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoder is a training-free framework that empowers large language models to invoke unseen APIs in code solution.
We show that ExploraCoder significantly improves performance for models lacking prior API knowledge, achieving an absolute increase of 11.24% over niave RAG approaches and 14.07% over pretraining methods in pass@10.
arXiv Detail & Related papers (2024-12-06T19:00:15Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API suggestion is a critical task in modern software development.
Recent advancements in large code models (LCMs) have shown promise in the API suggestion task.
arXiv Detail & Related papers (2024-09-20T03:12:35Z) - LLMs Meet Library Evolution: Evaluating Deprecated API Usage in LLM-based Code Completion [13.633501449498402]
Decomposing API usage is a problem in large language models (LLMs)-based code completion.
This study involved seven advanced LLMs, 145 API mappings from eight popular Python libraries, and 28,125 completion prompts.
We propose two lightweight fixing approaches, REPLACEAPI and INSERTPROMPT, which can serve as baseline approaches for future research.
arXiv Detail & Related papers (2024-06-14T08:44:10Z) - LLM+Reasoning+Planning for Supporting Incomplete User Queries in Presence of APIs [0.09374652839580183]
In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs.
While Large Language Models (LLMs) excel at natural language processing (NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the APIs.
arXiv Detail & Related papers (2024-05-21T01:16:34Z) - Compositional API Recommendation for Library-Oriented Code Generation [23.355509276291198]
We propose CAPIR, which adopts a "divide-and-conquer" strategy to recommend APIs for coarse-grained requirements.
We present two challenging benchmarks, RAPID (Recommend APIs based on Documentation) and LOCG (Library-Oriented Code Generation)
Experimental results on these benchmarks, demonstrate the effectiveness of CAPIR in comparison to existing baselines.
arXiv Detail & Related papers (2024-02-29T18:27:27Z) - APICom: Automatic API Completion via Prompt Learning and Adversarial
Training-based Data Augmentation [6.029137544885093]
API recommendation is the process of assisting developers in finding the required API among numerous candidate APIs.
Previous studies mainly modeled API recommendation as the recommendation task, and developers may not yet be able to find what they need.
Motivated by the neural machine translation research domain, we can model this problem as the generation task.
We propose a novel approach APICom based on prompt learning, which can generate API related to the query according to the prompts.
arXiv Detail & Related papers (2023-09-13T15:31:50Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.