LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs
- URL: http://arxiv.org/abs/2405.12433v2
- Date: Fri, 11 Oct 2024 01:22:27 GMT
- Title: LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs
- Authors: Sudhir Agarwal, Anu Sreepathy, David H. Alonso, Prarit Lamba,
- Abstract summary: In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs.
We leverage logical reasoning and classical AI planning along with an LLM for accurately answering user queries.
Our approach achieves over 95% success rate in most cases on a dataset containing complete and incomplete single goal and multi-goal queries.
- Score: 0.09374652839580183
- License:
- Abstract: Recent availability of Large Language Models (LLMs) has led to the development of numerous LLM-based approaches aimed at providing natural language interfaces for various end-user tasks. These end-user tasks in turn can typically be accomplished by orchestrating a given set of APIs. In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs. While LLMs excel at natural language processing (NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the APIs. The key idea behind our proposed approach is to leverage logical reasoning and classical AI planning along with an LLM for accurately answering user queries including identification and gathering of any missing information in these queries. Our approach uses an LLM and ASP (Answer Set Programming) solver to translate a user query to a representation in Planning Domain Definition Language (PDDL) via an intermediate representation in ASP. We introduce a special API "get_info_api" for gathering missing information. We model all the APIs as PDDL actions in a way that supports dataflow between the APIs. Our approach then uses a classical AI planner to generate an orchestration of API calls (including calls to get_info_api) to answer the user query. Our evaluation results show that our approach significantly outperforms a pure LLM based approach by achieving over 95\% success rate in most cases on a dataset containing complete and incomplete single goal and multi-goal queries where the multi-goal queries may or may not require dataflow among the APIs.
Related papers
- AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction [24.67142048995415]
Large Language Models (LLMs) can interact with the real world by connecting with versatile external APIs.
We introduce textttAppBench, the first benchmark to evaluate LLMs' ability to plan and execute multiple APIs from various sources.
arXiv Detail & Related papers (2024-10-10T04:03:13Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API suggestion is a critical task in modern software development.
Recent advancements in large code models (LCMs) have shown promise in the API suggestion task.
arXiv Detail & Related papers (2024-09-20T03:12:35Z) - NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls [18.831512738668792]
We present NESTFUL, a benchmark to evaluate large language models (LLMs) on nested sequences of API calls.
Our results show that most models do not perform well on nested APIs in NESTFUL as compared to their performance on the simpler problem settings available in existing benchmarks.
arXiv Detail & Related papers (2024-09-04T17:53:24Z) - LLM-based Frameworks for API Argument Filling in Task-Oriented Conversational Systems [39.54340884416936]
We study the application of Large Language Models (LLMs) for the problem of API argument filling task.
Our experimental results demonstrate that when paired with proposed techniques, the argument filling performance of LLMs noticeably improves.
arXiv Detail & Related papers (2024-06-27T06:54:53Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - A Solution-based LLM API-using Methodology for Academic Information Seeking [49.096714812902576]
SoAy is a solution-based LLM API-using methodology for academic information seeking.
It uses code with a solution as the reasoning method, where a solution is a pre-constructed API calling sequence.
Results show a 34.58-75.99% performance improvement compared to state-of-the-art LLM API-based baselines.
arXiv Detail & Related papers (2024-05-24T02:44:14Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
We introduce the PowerPoint Task Completion benchmark to assess the ability of Large Language Models to finish multi-turn, multi-modal instructions.
We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence.
The results show that GPT-4 outperforms other LLMs with 75.1% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6% session accuracy.
arXiv Detail & Related papers (2023-11-03T08:06:35Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
We propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios.
Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM.
arXiv Detail & Related papers (2023-04-27T14:45:55Z) - On the Effectiveness of Pretrained Models for API Learning [8.788509467038743]
Developers frequently use APIs to implement certain functionalities, such as parsing Excel Files, reading and writing text files line by line, etc.
Developers can greatly benefit from automatic API usage sequence generation based on natural language queries for building applications in a faster and cleaner manner.
Existing approaches utilize information retrieval models to search for matching API sequences given a query or use RNN-based encoder-decoder to generate API sequences.
arXiv Detail & Related papers (2022-04-05T20:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.