PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction
- URL: http://arxiv.org/abs/2405.15188v1
- Date: Fri, 24 May 2024 03:43:55 GMT
- Title: PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction
- Authors: Bingchen Yang, Haiyong Jiang, Hao Pan, Peter Wonka, Jun Xiao, Guosheng Lin,
- Abstract summary: We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
- Score: 86.726941702182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reverse engineering CAD models from raw geometry is a classic but challenging research problem. In particular, reconstructing the CAD modeling sequence from point clouds provides great interpretability and convenience for editing. To improve upon this problem, we introduce geometric guidance into the reconstruction network. Our proposed model, PS-CAD, reconstructs the CAD modeling sequence one step at a time. At each step, we provide two forms of geometric guidance. First, we provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud. This helps the framework to focus on regions that still need work. Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces where a CAD extrusion step could be started. Our framework has three major components. Geometric guidance computation extracts the two types of geometric guidance. Single-step reconstruction computes a single candidate CAD modeling step for each provided prompt. Single-step selection selects among the candidate CAD modeling steps. The process continues until the reconstruction is completed. Our quantitative results show a significant improvement across all metrics. For example, on the dataset DeepCAD, PS-CAD improves upon the best published SOTA method by reducing the geometry errors (CD and HD) by 10%, and the structural error (ECD metric) by about 15%.
Related papers
- 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise
Sketch Instance Guided Attention [13.227571488321358]
We propose an end-to-end trainable and auto-regressive architecture to recover the design history of a CAD model.
Our model learns visual-language representations by layer-wise cross-attention between point cloud and CAD language embedding.
Thanks to its auto-regressive nature, CAD-SIGNet not only reconstructs a unique full design history of the corresponding CAD model given an input point cloud but also provides multiple plausible design choices.
arXiv Detail & Related papers (2024-02-27T16:53:16Z) - Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds [26.10631058349939]
We propose a hybrid analytic-neural reconstruction scheme that bridges the gap between segmented point clouds and structured CAD models.
We also propose a novel implicit neural representation of freeform surfaces, driving up the performance of our overall CAD reconstruction scheme.
arXiv Detail & Related papers (2023-12-07T08:23:44Z) - P2CADNet: An End-to-End Reconstruction Network for Parametric 3D CAD
Model from Point Clouds [10.041481396324517]
This paper proposes an end-to-end network to reconstruct featured CAD model from point cloud (P2CADNet)
We evaluate P2CADNet on the public dataset, and the experimental results show that P2CADNet has excellent reconstruction quality and accuracy.
arXiv Detail & Related papers (2023-10-04T08:00:05Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Net is an end-to-end neural network aimed at reconstructing compact and easy-to-edit CAD models.
We show superiority over state-of-the-art alternatives including the closely related method for supervised CAD reconstruction.
arXiv Detail & Related papers (2023-03-19T09:26:03Z) - Reconstructing editable prismatic CAD from rounded voxel models [16.03976415868563]
We introduce a novel neural network architecture to solve this challenging task.
Our method reconstructs the input geometry in the voxel space by decomposing the shape.
During inference, we obtain the CAD data by first searching a database of 2D constrained sketches.
arXiv Detail & Related papers (2022-09-02T16:44:10Z) - Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval
from a Single Image [58.953160501596805]
We propose a novel approach towards constructing a joint embedding space between 2D images and 3D CAD models in a patch-wise fashion.
Our approach is more robust than state of the art in real-world scenarios without any exact CAD matches.
arXiv Detail & Related papers (2021-08-20T20:58:52Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.