PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
- URL: http://arxiv.org/abs/2503.18147v2
- Date: Wed, 26 Mar 2025 10:42:11 GMT
- Title: PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
- Authors: Ke Niu, Yuwen Chen, Haiyang Yu, Zhuofan Chen, Xianghui Que, Bin Li, Xiangyang Xue,
- Abstract summary: ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test.<n> PHT-CAD is a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models.
- Score: 52.681829043446044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing, yet 2D Parametric Primitive Analysis (PPA) remains underexplored due to two key challenges: structural constraint reasoning and advanced semantic understanding. To tackle these challenges, we first propose an Efficient Hybrid Parametrization (EHP) for better representing 2D engineering drawings. EHP contains four types of atomic component i.e., point, line, circle, and arc). Additionally, we propose PHT-CAD, a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models (VLMs) for precise engineering drawing analysis. In PHT-CAD, we introduce four dedicated regression heads to predict corresponding atomic components. To train PHT-CAD, a three-stage training paradigm Progressive Hierarchical Tuning (PHT) is proposed to progressively enhance PHT-CAD's capability to perceive individual primitives, infer structural constraints, and align annotation layers with their corresponding geometric representations. Considering that existing datasets lack complete annotation layers and real-world engineering drawings, we introduce ParaCAD, the first large-scale benchmark that explicitly integrates both the geometric and annotation layers. ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test. Extensive experiments demonstrate the effectiveness of PHT-CAD and highlight the practical significance of ParaCAD in advancing 2D PPA research.
Related papers
- CMT: A Cascade MAR with Topology Predictor for Multimodal Conditional CAD Generation [59.76687657887415]
We propose a cascade MAR with topology predictor (CMT), the first multimodal framework for CAD generation based on Boundary Representation (B-Rep)
Specifically, the cascade MAR can effectively capture the edge-counters-surface'' priors that are essential in B-Reps.
We develop a large-scale multimodal CAD dataset, mmABC, which includes over 1.3 million B-Rep models with multimodal annotations.
arXiv Detail & Related papers (2025-04-29T14:52:28Z) - CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images [69.7768227804928]
CADCrafter is an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data.
We introduce a geometry encoder to accurately capture diverse geometric features.
Our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.
arXiv Detail & Related papers (2025-04-07T06:01:35Z) - CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs [15.505120320280007]
This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM.<n>It maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism.<n>It also discretizes 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations.
arXiv Detail & Related papers (2024-12-27T14:19:36Z) - CADSpotting: Robust Panoptic Symbol Spotting on Large-Scale CAD Drawings [21.512025767558498]
CADSpotting represents primitives through densely sampled points with attributes like coordinates and colors.<n>We propose a novel Sliding Window Aggregation (SWA) technique, combining weighted voting and Non-Maximum Suppression (NMS)<n> Experiments on FloorPlanCAD and LS-CAD datasets show that CADSpotting significantly outperforms existing methods.
arXiv Detail & Related papers (2024-12-10T10:22:17Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds [26.10631058349939]
We propose a hybrid analytic-neural reconstruction scheme that bridges the gap between segmented point clouds and structured CAD models.
We also propose a novel implicit neural representation of freeform surfaces, driving up the performance of our overall CAD reconstruction scheme.
arXiv Detail & Related papers (2023-12-07T08:23:44Z) - PPI-NET: End-to-End Parametric Primitive Inference [24.31083483088741]
In engineering applications, line, circle, arc, and point are collectively referred to as primitives.
We propose an efficient and accurate end-to-end method to infer parametric primitives from hand-drawn sketch images.
arXiv Detail & Related papers (2023-08-03T03:50:49Z) - SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in
Computer-Aided Design [18.041056084458567]
Parametric computer-aided design (CAD) is the dominant paradigm in mechanical engineering for physical design.
SketchGraphs is a collection of 15 million sketches extracted from real-world CAD models coupled with an open-source data processing pipeline.
arXiv Detail & Related papers (2020-07-16T17:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.