Efficient Reinforcement Learning via Large Language Model-based Search
- URL: http://arxiv.org/abs/2405.15194v1
- Date: Fri, 24 May 2024 03:53:57 GMT
- Title: Efficient Reinforcement Learning via Large Language Model-based Search
- Authors: Siddhant Bhambri, Amrita Bhattacharjee, Huan Liu, Subbarao Kambhampati,
- Abstract summary: Large Language Models (LLMs) have rapidly gained prominence across a magnitude of natural language tasks.
We propose MEDIC: a framework that augments LLMs with a Model-based feEDback critIC to generate a possibly sub-optimal but valid plan for an abstract problem.
Our experiments show 1) the effectiveness of augmenting LLMs with MEDIC, 2) a significant improvement in the sample complexity of PPO and A2C-based RL agents when guided by our LLM-generated plan, and 3) pave the direction for further explorations of how these models can be used.
- Score: 27.307583105810895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) suffers from sample inefficiency in sparse reward domains, and the problem is pronounced if there are stochastic transitions. To improve the sample efficiency, reward shaping is a well-studied approach to introduce intrinsic rewards that can help the RL agent converge to an optimal policy faster. However, designing a useful reward shaping function specific to each problem is challenging, even for domain experts. They would either have to rely on task-specific domain knowledge or provide an expert demonstration independently for each task. Given, that Large Language Models (LLMs) have rapidly gained prominence across a magnitude of natural language tasks, we aim to answer the following question: Can we leverage LLMs to construct a reward shaping function that can boost the sample efficiency of an RL agent? In this work, we aim to leverage off-the-shelf LLMs to generate a guide policy by solving a simpler deterministic abstraction of the original problem that can then be used to construct the reward shaping function for the downstream RL agent. Given the ineffectiveness of directly prompting LLMs, we propose MEDIC: a framework that augments LLMs with a Model-based feEDback critIC, which verifies LLM-generated outputs, to generate a possibly sub-optimal but valid plan for the abstract problem. Our experiments across domains from the BabyAI environment suite show 1) the effectiveness of augmenting LLMs with MEDIC, 2) a significant improvement in the sample complexity of PPO and A2C-based RL agents when guided by our LLM-generated plan, and finally, 3) pave the direction for further explorations of how these models can be used to augment existing RL pipelines.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning [16.654435148168172]
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making.
We propose an LLM-guided hierarchical RL framework, termed LDSC, to enhance sample efficiency, generalization, and multi-task adaptability.
arXiv Detail & Related papers (2025-03-24T15:49:56Z) - Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse RL [7.988692259455583]
Large language models (LLMs) trained with Reinforcement Learning from Human Feedback have demonstrated remarkable capabilities, but their underlying reward functions and decision-making processes remain opaque.
This paper introduces a novel approach to interpreting LLMs by applying inverse reinforcement learning (IRL) to recover their implicit reward functions.
We conduct experiments on toxicity-aligned LLMs of varying sizes, extracting reward models that achieve up to 80.40% accuracy in predicting human preferences.
arXiv Detail & Related papers (2024-10-16T12:14:25Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Beyond Human Preferences: Exploring Reinforcement Learning Trajectory Evaluation and Improvement through LLMs [12.572869123617783]
Reinforcement learning (RL) faces challenges in evaluating policy trajectories within intricate game tasks.
PbRL presents a pioneering framework that capitalizes on human preferences as pivotal reward signals.
We propose a LLM-enabled automatic preference generation framework named LLM4PG.
arXiv Detail & Related papers (2024-06-28T04:21:24Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.