論文の概要: Exploring the Impact of Synthetic Data for Aerial-view Human Detection
- arxiv url: http://arxiv.org/abs/2405.15203v2
- Date: Mon, 27 May 2024 05:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:49:28.280020
- Title: Exploring the Impact of Synthetic Data for Aerial-view Human Detection
- Title(参考訳): 航空ビュー人間検出における合成データの影響を探る
- Authors: Hyungtae Lee, Yan Zhang, Yi-Ting Shen, Heesung Kwon, Shuvra S. Bhattacharyya,
- Abstract要約: 航空ビューによる人間の検出は、より多様な人間の外観を捉えるために、大規模なデータに対する大きな需要がある。
合成データはデータを拡張するのに十分なリソースだが、実際のデータとのドメインギャップは、トレーニングで使用する上で最大の障害である。
- 参考スコア(独自算出の注目度): 17.41001388151408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aerial-view human detection has a large demand for large-scale data to capture more diverse human appearances compared to ground-view human detection. Therefore, synthetic data can be a good resource to expand data, but the domain gap with real-world data is the biggest obstacle to its use in training. As a common solution to deal with the domain gap, the sim2real transformation is used, and its quality is affected by three factors: i) the real data serving as a reference when calculating the domain gap, ii) the synthetic data chosen to avoid the transformation quality degradation, and iii) the synthetic data pool from which the synthetic data is selected. In this paper, we investigate the impact of these factors on maximizing the effectiveness of synthetic data in training in terms of improving learning performance and acquiring domain generalization ability--two main benefits expected of using synthetic data. As an evaluation metric for the second benefit, we introduce a method for measuring the distribution gap between two datasets, which is derived as the normalized sum of the Mahalanobis distances of all test data. As a result, we have discovered several important findings that have never been investigated or have been used previously without accurate understanding. We expect that these findings can break the current trend of either naively using or being hesitant to use synthetic data in machine learning due to the lack of understanding, leading to more appropriate use in future research.
- Abstract(参考訳): 航空ビューの人間検出は、地上ビューの人間検出と比較して、より多様な人間の外見を捉えるため、大規模なデータに対する大きな需要がある。
したがって、合成データはデータを拡張するのに良いリソースとなるが、実世界のデータとのドメインギャップは、トレーニングで使用する上で最大の障害である。
ドメインギャップに対処する一般的な解決策として、sim2real変換が使用され、その品質は以下の3つの要因によって影響を受ける。
一 領域ギャップを計算する際に基準となる実データ
二 変換品質の劣化を避けるために選択された合成データ及び
三 合成データが選択された合成データプール
本稿では,これらの要因が学習性能の向上とドメイン一般化能力の獲得の観点から,学習における合成データの有効性の最大化に与える影響について検討する。
第2の利点評価指標として,全テストデータのマハラノビス距離の正規化和として導かれる2つのデータセット間の分布ギャップを測定する手法を提案する。
その結果, 正確な理解が得られず, これまでに研究されていない, あるいは使用されていない重要な発見がいくつか見出された。
これらの発見は、理解の欠如により、直感的に使用するか、あるいは機械学習に合成データを使うことをためらう現在の傾向を破り、将来の研究でより適切な利用につながると期待している。
関連論文リスト
- Exploring the Potential of Synthetic Data to Replace Real Data [16.89582896061033]
実データを置き換えるための合成データのポテンシャルは、ドメイン間の実画像の数や、トレーニングされたモデルを評価するためのテストセットによって異なることがわかった。
train2test 距離と $textAP_textt2t$ という2つの新しい指標を導入し、合成データを用いたクロスドメイントレーニングセットの性能を評価する。
論文 参考訳(メタデータ) (2024-08-26T18:20:18Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
本研究では,合成データと実世界のデータとの等価性,実データに対する合成データの置換可能性,合成データ生成装置の柔軟性について検討する。
以上の結果から, 合成データによりモデル性能が向上するだけでなく, 実データへの置換性も向上し, 性能損失の60%から80%が置換可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-24T17:21:32Z) - The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data [40.165159490379146]
評価値が不偏であっても, 偽陽性の発見率(タイプ1の誤り)は不可避的に高いことが示唆された。
以前提案された補正係数が使用されているにもかかわらず、この問題は深層生成モデルに対して持続する。
論文 参考訳(メタデータ) (2023-12-13T02:04:41Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
医療分野では、プライバシー上の懸念から個人レベルのデータへのアクセスは困難であることが多い。
有望な代替手段は、完全な合成データの生成である。
本研究では,最先端の合成データ生成手法を用いる。
論文 参考訳(メタデータ) (2023-05-12T13:13:55Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
Recurrent Generative Adrial Networks (RGAN)のような最先端技術モデルは、リアルな合成データを生成するために使用される。
本稿では,データにグローバルな注意を払っているトランスフォーマーベースの生成敵ネットワークを,PAMAP2とリアルワールドヒューマンアクティビティ認識データセットでRGANと比較する。
論文 参考訳(メタデータ) (2021-09-02T16:47:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。