論文の概要: Unsupervised Motion Segmentation for Neuromorphic Aerial Surveillance
- arxiv url: http://arxiv.org/abs/2405.15209v1
- Date: Fri, 24 May 2024 04:36:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 17:59:15.004140
- Title: Unsupervised Motion Segmentation for Neuromorphic Aerial Surveillance
- Title(参考訳): ニューロモルフィックな空中サーベイランスのための教師なしモーションセグメンテーション
- Authors: Sami Arja, Alexandre Marcireau, Saeed Afshar, Bharath Ramesh, Gregory Cohen,
- Abstract要約: イベントカメラには、例外的な時間分解能、優れたダイナミックレンジ、最小限の電力要求がある。
イベントベースモーションセグメンテーションの従来手法には制限があった。
提案手法は,イベントデータと光フロー情報の両方における自己教師型トランスフォーマーの特徴を利用する。
- 参考スコア(独自算出の注目度): 42.04157319642197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving optimal performance with frame-based vision sensors on aerial platforms poses a significant challenge due to the fundamental tradeoffs between bandwidth and latency. Event cameras, which draw inspiration from biological vision systems, present a promising alternative due to their exceptional temporal resolution, superior dynamic range, and minimal power requirements. Due to these properties, they are well-suited for processing and segmenting fast motions that require rapid reactions. However, previous methods for event-based motion segmentation encountered limitations, such as the need for per-scene parameter tuning or manual labelling to achieve satisfactory results. To overcome these issues, our proposed method leverages features from self-supervised transformers on both event data and optical flow information, eliminating the need for human annotations and reducing the parameter tuning problem. In this paper, we use an event camera with HD resolution onboard a highly dynamic aerial platform in an urban setting. We conduct extensive evaluations of our framework across multiple datasets, demonstrating state-of-the-art performance compared to existing works. Our method can effectively handle various types of motion and an arbitrary number of moving objects. Code and dataset are available at: \url{https://samiarja.github.io/evairborne/}
- Abstract(参考訳): 無線プラットフォーム上でのフレームベースの視覚センサによる最適性能の実現は、帯域幅とレイテンシの根本的なトレードオフのため、大きな課題となる。
生物学的視覚システムからインスピレーションを得たイベントカメラは、例外的な時間分解能、優れたダイナミックレンジ、最小限の電力要求のために、有望な代替手段を提供する。
これらの性質のため、高速な反応を必要とする高速な運動の処理やセグメンテーションに適している。
しかし、イベントベースの動作セグメンテーションの従来の手法では、シーンごとのパラメータチューニングや、良好な結果を得るために手動ラベリングが必要なといった制限に遭遇した。
これらの課題を克服するために,提案手法では,イベントデータと光フロー情報の両方における自己教師型トランスフォーマーの特徴を活用し,人間のアノテーションの必要性を排除し,パラメータチューニング問題を軽減している。
本稿では,都市環境における高ダイナミックな空中プラットフォーム上でHD解像度のイベントカメラを使用する。
複数のデータセットにまたがってフレームワークを広範囲に評価し、既存の作業と比較して最先端のパフォーマンスを実証する。
本手法は,様々な種類の動きと任意の移動物体を効果的に処理できる。
コードとデータセットは: \url{https://samiarja.github.io/evairborne/}
関連論文リスト
- Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
本稿では,任意の点を追跡するイベントベースのフレームワークを提案する。
出来事の空間的空間性や動きの感度によって引き起こされる課題に対処する。
競合モデルパラメータによる処理を150%高速化する。
論文 参考訳(メタデータ) (2024-12-02T09:13:29Z) - DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
本稿では,スムーズなカメラ軌跡を推定し,野生のカジュアルビデオのための高密度点雲を得るための,簡潔でエレガントでロバストなパイプラインを提案する。
提案手法は,複雑な動的課題シーンにおいても,カメラポーズ推定による最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T13:01:16Z) - Out of the Room: Generalizing Event-Based Dynamic Motion Segmentation
for Complex Scenes [10.936350433952668]
モーションセグメンテーション(Motion segmentation)とも呼ばれる動的シーン部品の迅速かつ信頼性の高い識別は、モバイルセンサーにとって重要な課題である。
イベントカメラはこれらの制限を克服する可能性があるが、それに対応する方法は小規模の屋内環境でのみ実証されている。
本研究は,複雑な大規模屋外環境にも展開可能な,クラスに依存しない動作セグメンテーションのイベントベース手法を提案する。
論文 参考訳(メタデータ) (2024-03-07T14:59:34Z) - Event-Free Moving Object Segmentation from Moving Ego Vehicle [88.33470650615162]
動的シーンにおけるオブジェクトセグメンテーション(MOS)の移動は、自律運転において重要で困難だが、未調査の研究テーマである。
ほとんどのセグメンテーション法は、光学フローマップから得られるモーションキューを利用する。
我々は,光学的フローに頼らずにリッチなモーションキューを提供する,より優れた映像理解のためのイベントカメラを活用することを提案する。
論文 参考訳(メタデータ) (2023-04-28T23:43:10Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
ローカライゼーションとマッピングタスクのための非同期および不規則なイベントストリームの利点を利用する、イベントベースのvSLAMアルゴリズムのレビュー。
Paperは、イベントベースのvSLAMメソッドを、特徴ベース、ダイレクト、モーション補償、ディープラーニングの4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-04-19T16:21:14Z) - Event-based Motion Segmentation by Cascaded Two-Level Multi-Model
Fitting [44.97191206895915]
独立に動く物体を単眼イベントカメラで識別するためのケースド2レベル多モデルフィッティング法を提案する。
動作パターンの異なる実世界のシーンにおいて,本手法の有効性と汎用性を示す実験を行った。
論文 参考訳(メタデータ) (2021-11-05T12:59:41Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
イベントベースカメラで取得したオブジェクトを独立に識別する手法を開発した。
この方法は、予想される移動物体の数を事前に決定することなく、技術状態よりも同等以上の性能を発揮する。
論文 参考訳(メタデータ) (2020-12-16T04:06:02Z) - 0-MMS: Zero-Shot Multi-Motion Segmentation With A Monocular Event Camera [13.39518293550118]
本稿では,ボトムアップ機能トラッキングとトップダウン動作補償を組み合わせたモノラルなマルチモーションセグメンテーション手法を提案する。
時間間隔内でのイベントを用いて、本手法はシーンを分割とマージによって複数の動作に分割する。
このアプローチは、EV-IMO、EED、MODデータセットから、挑戦的な現実シナリオと合成シナリオの両方で評価された。
論文 参考訳(メタデータ) (2020-06-11T02:34:29Z) - End-to-end Learning of Object Motion Estimation from Retinal Events for
Event-based Object Tracking [35.95703377642108]
イベントベースオブジェクト追跡のためのパラメトリックオブジェクトレベルの動き/変換モデルを学習し、回帰する新しいディープニューラルネットワークを提案する。
この目的を達成するために,線形時間減衰表現を用いた同期時間曲面を提案する。
我々は、TSLTDフレームのシーケンスを新しい網膜運動回帰ネットワーク(RMRNet)に供給し、エンド・ツー・エンドの5-DoFオブジェクト・モーション・レグレッションを実行する。
論文 参考訳(メタデータ) (2020-02-14T08:19:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。