iVideoGPT: Interactive VideoGPTs are Scalable World Models
- URL: http://arxiv.org/abs/2405.15223v3
- Date: Thu, 31 Oct 2024 08:58:08 GMT
- Title: iVideoGPT: Interactive VideoGPTs are Scalable World Models
- Authors: Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye Hao, Mingsheng Long,
- Abstract summary: World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making.
This work introduces Interactive VideoGPT, a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens.
iVideoGPT features a novel compressive tokenization technique that efficiently discretizes high-dimensional visual observations.
- Score: 70.02290687442624
- License:
- Abstract: World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making. However, the high demand for interactivity poses challenges in harnessing recent advancements in video generative models for developing world models at scale. This work introduces Interactive VideoGPT (iVideoGPT), a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens, facilitating an interactive experience of agents via next-token prediction. iVideoGPT features a novel compressive tokenization technique that efficiently discretizes high-dimensional visual observations. Leveraging its scalable architecture, we are able to pre-train iVideoGPT on millions of human and robotic manipulation trajectories, establishing a versatile foundation that is adaptable to serve as interactive world models for a wide range of downstream tasks. These include action-conditioned video prediction, visual planning, and model-based reinforcement learning, where iVideoGPT achieves competitive performance compared with state-of-the-art methods. Our work advances the development of interactive general world models, bridging the gap between generative video models and practical model-based reinforcement learning applications. Code and pre-trained models are available at https://thuml.github.io/iVideoGPT.
Related papers
- VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidMan is a novel framework that employs a two-stage training mechanism to enhance stability and improve data utilization efficiency.
Our framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset.
arXiv Detail & Related papers (2024-11-14T03:13:26Z) - EVA: An Embodied World Model for Future Video Anticipation [42.937348053592636]
We decompose the complex video prediction into four meta-tasks that enable the world model to handle this issue in a more fine-grained manner.
We introduce a new benchmark named Embodied Video Anticipation Benchmark (EVA-Bench) to provide a well-rounded evaluation.
We propose the Embodied Video Anticipator (EVA), a unified framework aiming at video understanding and generation.
arXiv Detail & Related papers (2024-10-20T18:24:00Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics.
Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge.
arXiv Detail & Related papers (2024-10-14T17:19:23Z) - Transformers and Slot Encoding for Sample Efficient Physical World Modelling [1.5498250598583487]
We propose an architecture combining Transformers for world modelling with the slot-attention paradigm, an approach for learning representations of objects appearing in a scene.
We describe the resulting neural architecture and report experimental results showing an improvement over the existing solutions in terms of sample efficiency and a reduction of the variation of the performance over the training examples.
arXiv Detail & Related papers (2024-05-30T15:48:04Z) - Towards Multi-Task Multi-Modal Models: A Video Generative Perspective [5.495245220300184]
This thesis chronicles our endeavor to build multi-task models for generating videos and other modalities under diverse conditions.
We unveil a novel approach to mapping bidirectionally between visual observation and interpretable lexical terms.
Our scalable visual token representation proves beneficial across generation, compression, and understanding tasks.
arXiv Detail & Related papers (2024-05-26T23:56:45Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
We propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control.
A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects.
generated video sequences by our TrackDiffusion can be used as training data for visual perception models.
arXiv Detail & Related papers (2023-12-01T15:24:38Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
In this paper, we study the problem of pre-training world models with abundant in-the-wild videos for efficient learning of visual control tasks.
We introduce Contextualized World Models (ContextWM) that explicitly separate context and dynamics modeling.
Our experiments show that in-the-wild video pre-training equipped with ContextWM can significantly improve the sample efficiency of model-based reinforcement learning.
arXiv Detail & Related papers (2023-05-29T14:29:12Z) - Masked World Models for Visual Control [90.13638482124567]
We introduce a visual model-based RL framework that decouples visual representation learning and dynamics learning.
We demonstrate that our approach achieves state-of-the-art performance on a variety of visual robotic tasks.
arXiv Detail & Related papers (2022-06-28T18:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.