EVA: An Embodied World Model for Future Video Anticipation
- URL: http://arxiv.org/abs/2410.15461v1
- Date: Sun, 20 Oct 2024 18:24:00 GMT
- Title: EVA: An Embodied World Model for Future Video Anticipation
- Authors: Xiaowei Chi, Hengyuan Zhang, Chun-Kai Fan, Xingqun Qi, Rongyu Zhang, Anthony Chen, Chi-min Chan, Wei Xue, Wenhan Luo, Shanghang Zhang, Yike Guo,
- Abstract summary: We decompose the complex video prediction into four meta-tasks that enable the world model to handle this issue in a more fine-grained manner.
We introduce a new benchmark named Embodied Video Anticipation Benchmark (EVA-Bench) to provide a well-rounded evaluation.
We propose the Embodied Video Anticipator (EVA), a unified framework aiming at video understanding and generation.
- Score: 42.937348053592636
- License:
- Abstract: World models integrate raw data from various modalities, such as images and language to simulate comprehensive interactions in the world, thereby displaying crucial roles in fields like mixed reality and robotics. Yet, applying the world model for accurate video prediction is quite challenging due to the complex and dynamic intentions of the various scenes in practice. In this paper, inspired by the human rethinking process, we decompose the complex video prediction into four meta-tasks that enable the world model to handle this issue in a more fine-grained manner. Alongside these tasks, we introduce a new benchmark named Embodied Video Anticipation Benchmark (EVA-Bench) to provide a well-rounded evaluation. EVA-Bench focused on evaluating the video prediction ability of human and robot actions, presenting significant challenges for both the language model and the generation model. Targeting embodied video prediction, we propose the Embodied Video Anticipator (EVA), a unified framework aiming at video understanding and generation. EVA integrates a video generation model with a visual language model, effectively combining reasoning capabilities with high-quality generation. Moreover, to enhance the generalization of our framework, we tailor-designed a multi-stage pretraining paradigm that adaptatively ensembles LoRA to produce high-fidelity results. Extensive experiments on EVA-Bench highlight the potential of EVA to significantly improve performance in embodied scenes, paving the way for large-scale pre-trained models in real-world prediction tasks.
Related papers
- Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.
To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.
Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - Improving Dynamic Object Interactions in Text-to-Video Generation with AI Feedback [130.090296560882]
We investigate the use of feedback to enhance the object dynamics in text-to-video models.
We show that our method can effectively optimize a wide variety of rewards, with binary AI feedback driving the most significant improvements in video quality for dynamic interactions.
arXiv Detail & Related papers (2024-12-03T17:44:23Z) - WorldSimBench: Towards Video Generation Models as World Simulators [79.69709361730865]
We classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench.
WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks.
Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
arXiv Detail & Related papers (2024-10-23T17:56:11Z) - iVideoGPT: Interactive VideoGPTs are Scalable World Models [70.02290687442624]
World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making.
This work introduces Interactive VideoGPT, a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens.
iVideoGPT features a novel compressive tokenization technique that efficiently discretizes high-dimensional visual observations.
arXiv Detail & Related papers (2024-05-24T05:29:12Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
In this paper, we study the problem of pre-training world models with abundant in-the-wild videos for efficient learning of visual control tasks.
We introduce Contextualized World Models (ContextWM) that explicitly separate context and dynamics modeling.
Our experiments show that in-the-wild video pre-training equipped with ContextWM can significantly improve the sample efficiency of model-based reinforcement learning.
arXiv Detail & Related papers (2023-05-29T14:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.