Adversarial Attacks on Hidden Tasks in Multi-Task Learning
- URL: http://arxiv.org/abs/2405.15244v2
- Date: Tue, 28 May 2024 00:33:16 GMT
- Title: Adversarial Attacks on Hidden Tasks in Multi-Task Learning
- Authors: Yu Zhe, Rei Nagaike, Daiki Nishiyama, Kazuto Fukuchi, Jun Sakuma,
- Abstract summary: We propose a novel adversarial attack method that leverages knowledge from non-target tasks and the shared backbone network of the multi-task model.
Experimental results on CelebA and DeepFashion datasets demonstrate the effectiveness of our method in degrading the accuracy of hidden tasks.
- Score: 8.88375168590583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are susceptible to adversarial attacks, where slight perturbations to input data lead to misclassification. Adversarial attacks become increasingly effective with access to information about the targeted classifier. In the context of multi-task learning, where a single model learns multiple tasks simultaneously, attackers may aim to exploit vulnerabilities in specific tasks with limited information. This paper investigates the feasibility of attacking hidden tasks within multi-task classifiers, where model access regarding the hidden target task and labeled data for the hidden target task are not available, but model access regarding the non-target tasks is available. We propose a novel adversarial attack method that leverages knowledge from non-target tasks and the shared backbone network of the multi-task model to force the model to forget knowledge related to the target task. Experimental results on CelebA and DeepFashion datasets demonstrate the effectiveness of our method in degrading the accuracy of hidden tasks while preserving the performance of visible tasks, contributing to the understanding of adversarial vulnerabilities in multi-task classifiers.
Related papers
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks.
We propose the Pre-trained Trojan attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks.
We highlight the challenges posed by cross-task activation and shortcut connections in successful backdoor attacks.
arXiv Detail & Related papers (2023-12-23T05:51:40Z) - TIDo: Source-free Task Incremental Learning in Non-stationary
Environments [0.0]
Updating a model-based agent to learn new target tasks requires us to store past training data.
Few-shot task incremental learning methods overcome the limitation of labeled target datasets.
We propose a one-shot task incremental learning approach that can adapt to non-stationary source and target tasks.
arXiv Detail & Related papers (2023-01-28T02:19:45Z) - Data Poisoning Attack Aiming the Vulnerability of Continual Learning [25.480762565632332]
We present a simple task-specific data poisoning attack that can be used in the learning process of a new task.
We experiment with the attack on the two representative regularization-based continual learning methods.
arXiv Detail & Related papers (2022-11-29T02:28:05Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
We present a flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTingAnism (ROSETTA)
Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks.
Experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance.
arXiv Detail & Related papers (2022-05-06T07:31:28Z) - False Memory Formation in Continual Learners Through Imperceptible
Backdoor Trigger [3.3439097577935213]
sequentially learning new information presented to a continual (incremental) learning model.
We show that an intelligent adversary can introduce small amount of misinformation to the model during training to cause deliberate forgetting of a specific task or class at test time.
We demonstrate such an adversary's ability to assume control of the model by injecting "backdoor" attack samples to commonly used generative replay and regularization based continual learning approaches.
arXiv Detail & Related papers (2022-02-09T14:21:13Z) - Learning Multiple Dense Prediction Tasks from Partially Annotated Data [41.821234589075445]
We look at jointly learning of multiple dense prediction tasks on partially annotated data, which we call multi-task partially-supervised learning.
We propose a multi-task training procedure that successfully leverages task relations to supervise its multi-task learning when data is partially annotated.
We rigorously demonstrate that our proposed method effectively exploits the images with unlabelled tasks and outperforms existing semi-supervised learning approaches and related methods on three standard benchmarks.
arXiv Detail & Related papers (2021-11-29T19:03:12Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.