論文の概要: Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient
- arxiv url: http://arxiv.org/abs/2405.15304v2
- Date: Fri, 20 Dec 2024 08:23:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:24.762922
- Title: Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient
- Title(参考訳): 概念領域補正と勾配保存による拡散モデルの非学習概念
- Authors: Yongliang Wu, Shiji Zhou, Mingzhuo Yang, Lianzhe Wang, Heng Chang, Wenbo Zhu, Xinting Hu, Xiao Zhou, Xu Yang,
- Abstract要約: 我々はtextbfDoCo (textbfDomaintextbfCorrection) という新しい概念領域補正フレームワークを提案する。
本手法は, 対象概念の包括的未学習を保証し, 先進的学習を通して, センシティブな概念とアンカーの概念の出力領域を整合させることにより, 対象概念の包括的未学習を確実にする。
また、矛盾する勾配成分を緩和し、特定の概念を学習しながらモデルの実用性を維持するための概念保存的勾配手術手法も導入する。
- 参考スコア(独自算出の注目度): 20.698305103879232
- License:
- Abstract: Text-to-image diffusion models have achieved remarkable success in generating photorealistic images. However, the inclusion of sensitive information during pre-training poses significant risks. Machine Unlearning (MU) offers a promising solution to eliminate sensitive concepts from these models. Despite its potential, existing MU methods face two main challenges: 1) limited generalization, where concept erasure is effective only within the unlearned set, failing to prevent sensitive concept generation from out-of-set prompts; and 2) utility degradation, where removing target concepts significantly impacts the model's overall performance. To address these issues, we propose a novel concept domain correction framework named \textbf{DoCo} (\textbf{Do}main \textbf{Co}rrection). By aligning the output domains of sensitive and anchor concepts through adversarial training, our approach ensures comprehensive unlearning of target concepts. Additionally, we introduce a concept-preserving gradient surgery technique that mitigates conflicting gradient components, thereby preserving the model's utility while unlearning specific concepts. Extensive experiments across various instances, styles, and offensive concepts demonstrate the effectiveness of our method in unlearning targeted concepts with minimal impact on related concepts, outperforming previous approaches even for out-of-distribution prompts.
- Abstract(参考訳): テキストと画像の拡散モデルは、フォトリアリスティック画像の生成において顕著な成功を収めた。
しかし、事前訓練中に機密情報が組み込まれることは重大なリスクをもたらす。
Machine Unlearning(MU)は、これらのモデルからセンシティブな概念を排除する、有望なソリューションを提供する。
その可能性にもかかわらず、既存のMUメソッドは2つの大きな課題に直面している。
1) 概念消去が未学習のセット内でのみ有効であり、外部のプロンプトからセンシティブな概念生成を防げないような限定的な一般化。
対象概念の削除は、モデル全体のパフォーマンスに大きな影響を与えます。
これらの問題に対処するために、新しい概念ドメイン補正フレームワークである \textbf{DoCo} (\textbf{Do}main \textbf{Co}rrection) を提案する。
本手法は, 対象概念の包括的未学習を保証し, 先進的学習を通して, センシティブな概念とアンカーの概念の出力領域を整合させることにより, 対象概念の包括的未学習を確実にする。
さらに,矛盾する勾配成分を緩和し,特定の概念を学習しながらモデルの実用性を維持できる,概念保存型勾配手術手法を導入する。
様々な事例,スタイル,攻撃的概念にまたがる広範囲な実験は,学習対象概念における本手法の有効性を実証し,関連する概念に最小限の影響を及ぼし,アウト・オブ・ディストリビューション・プロンプトにおいても従来の手法よりも優れていた。
関連論文リスト
- Fantastic Targets for Concept Erasure in Diffusion Models and Where To Find Them [21.386640828092524]
概念消去は拡散モデルにおける有害なコンテンツ生成のリスクを軽減するための有望な手法として現れてきた。
本稿では,各望ましくない概念に合わせて最適な目標概念を動的に選択するAdaptive Guided Erasure (AGE)法を提案する。
その結果, AGEは, 有効消去性能を維持しつつ, 無関係な概念を保存し, 最先端の消去手法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2025-01-31T08:17:23Z) - Concept Replacer: Replacing Sensitive Concepts in Diffusion Models via Precision Localization [48.20360860166279]
大規模な拡散モデルは高品質な画像を生成するが、しばしば性的に明示的なコンテンツや暴力的なコンテンツのような望ましくないコンテンツを生成する。
本研究では,非対象領域に影響を及ぼすことなく,特定の概念を除去することが可能な拡散モデルにおいて,対象概念を置き換えるための新しい手法を提案する。
本手法では,最小限のラベル付きデータを必要とする数発の学習で学習し,目標概念を正確に識別する専用概念ローカライザを提案する。
特定領域内では,DPCA(Dual Prompts Cross-Attention)モジュールが導入された。
論文 参考訳(メタデータ) (2024-12-02T08:05:39Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
本稿では,Human Feedback Inversion (HFI) というフレームワークを提案する。
実験の結果,画像品質を維持しながら,好ましくないコンテンツ生成を著しく削減し,公的な領域におけるAIの倫理的展開に寄与することが示された。
論文 参考訳(メタデータ) (2024-07-17T05:21:41Z) - ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction [20.43411883845885]
本研究では,非教師付き概念抽出(UCE)という,概念の人間的知識のない非教師付き概念抽出手法を提案する。
複数の概念を含むイメージを与えられたタスクは、事前訓練された拡散モデルから既存の知識のみに依存する個々の概念を抽出し、再現することを目的としている。
本稿では,事前学習した拡散モデル固有の能力を2つの側面に解き放つことで,UCEに対処するConceptExpressを提案する。
論文 参考訳(メタデータ) (2024-07-09T17:50:28Z) - ConceptPrune: Concept Editing in Diffusion Models via Skilled Neuron Pruning [10.201633236997104]
大規模テキスト・画像拡散モデルでは、印象的な画像生成能力が示されている。
提案するConceptPruneでは,まず,望ましくない概念を生成するための事前学習モデル内の重要な領域を同定する。
芸術的スタイル、ヌード性、オブジェクトの消去、ジェンダーのデバイアスなど、さまざまな概念に対する実験は、ターゲットのコンセプトをごくわずかに刈って効率よく消去できることを実証している。
論文 参考訳(メタデータ) (2024-05-29T16:19:37Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Infusion: Preventing Customized Text-to-Image Diffusion from Overfitting [51.606819347636076]
本研究では, 概念知識を損なう概念非依存オーバーフィッティングと, 限られたモダリティのカスタマイズに限定した概念特化オーバーフィッティングを分析した。
Infusionは、ターゲット概念の学習を、限られた訓練モダリティによって制限されるのを避けることができるT2Iカスタマイズ手法である。
論文 参考訳(メタデータ) (2024-04-22T09:16:25Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
テキスト・ツー・イメージ(T2I)拡散モデルはしばしば、透かしや安全でない画像のような望ましくない概念を不注意に生成する。
幾何学駆動制御に基づく新しい概念除去手法であるGeom-Erasingを提案する。
論文 参考訳(メタデータ) (2023-10-09T17:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。