Leveraging knowledge distillation for partial multi-task learning from multiple remote sensing datasets
- URL: http://arxiv.org/abs/2405.15394v1
- Date: Fri, 24 May 2024 09:48:50 GMT
- Title: Leveraging knowledge distillation for partial multi-task learning from multiple remote sensing datasets
- Authors: Hoàng-Ân Lê, Minh-Tan Pham,
- Abstract summary: Partial multi-task learning where training examples are annotated for one of the target tasks is a promising idea in remote sensing.
This paper proposes using knowledge distillation to replace the need of ground truths for the alternate task and enhance the performance of such approach.
- Score: 2.1178416840822023
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Partial multi-task learning where training examples are annotated for one of the target tasks is a promising idea in remote sensing as it allows combining datasets annotated for different tasks and predicting more tasks with fewer network parameters. The na\"ive approach to partial multi-task learning is sub-optimal due to the lack of all-task annotations for learning joint representations. This paper proposes using knowledge distillation to replace the need of ground truths for the alternate task and enhance the performance of such approach. Experiments conducted on the public ISPRS 2D Semantic Labeling Contest dataset show the effectiveness of the proposed idea on partial multi-task learning for semantic tasks including object detection and semantic segmentation in aerial images.
Related papers
- Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Data exploitation: multi-task learning of object detection and semantic
segmentation on partially annotated data [4.9914667450658925]
We study the joint learning of object detection and semantic segmentation, the two most popular vision problems.
We propose employing knowledge distillation to leverage joint-task optimization.
arXiv Detail & Related papers (2023-11-07T14:49:54Z) - Multi-Task Consistency for Active Learning [18.794331424921946]
Inconsistency-based active learning has proven to be effective in selecting informative samples for annotation.
We propose a novel multi-task active learning strategy for two coupled vision tasks: object detection and semantic segmentation.
Our approach achieves 95% of the fully-trained performance using only 67% of the available data.
arXiv Detail & Related papers (2023-06-21T17:34:31Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Learning Multiple Dense Prediction Tasks from Partially Annotated Data [41.821234589075445]
We look at jointly learning of multiple dense prediction tasks on partially annotated data, which we call multi-task partially-supervised learning.
We propose a multi-task training procedure that successfully leverages task relations to supervise its multi-task learning when data is partially annotated.
We rigorously demonstrate that our proposed method effectively exploits the images with unlabelled tasks and outperforms existing semi-supervised learning approaches and related methods on three standard benchmarks.
arXiv Detail & Related papers (2021-11-29T19:03:12Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.