論文の概要: ORCA: A Global Ocean Emulator for Multi-year to Decadal Predictions
- arxiv url: http://arxiv.org/abs/2405.15412v1
- Date: Fri, 24 May 2024 10:23:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:01:48.398044
- Title: ORCA: A Global Ocean Emulator for Multi-year to Decadal Predictions
- Title(参考訳): 海洋エミュレータORCA : 年次予測のための地球規模の海洋エミュレータ
- Authors: Zijie Guo, Pumeng Lyu, Fenghua Ling, Jing-Jia Luo, Niklas Boers, Wanli Ouyang, Lei Bai,
- Abstract要約: Oceanic Reliable foreCAstは、海洋循環を複数の年単位から2段階の時間スケールで予測する最初のデータ駆動モデルである。
これは、大洋の3次元の循環と力学を、高い物理的一貫性で正確にシミュレートする。
安定かつ忠実に海洋力学を時間スケールでエミュレートし、気候予測にもその可能性を示す。
- 参考スコア(独自算出の注目度): 45.77134616001159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ocean dynamics plays a crucial role in driving global weather and climate patterns. Accurate and efficient modeling of ocean dynamics is essential for improved understanding of complex ocean circulation and processes, for predicting climate variations and their associated teleconnections, and for addressing the challenges of climate change. While great efforts have been made to improve numerical Ocean General Circulation Models (OGCMs), accurate forecasting of global oceanic variations for multi-year remains to be a long-standing challenge. Here, we introduce ORCA (Oceanic Reliable foreCAst), the first data-driven model predicting global ocean circulation from multi-year to decadal time scales. ORCA accurately simulates the three-dimensional circulations and dynamics of the global ocean with high physical consistency. Hindcasts of key oceanic variables demonstrate ORCA's remarkable prediction skills in predicting ocean variations compared with state-of-the-art numerical OGCMs and abilities in capturing occurrences of extreme events at the subsurface ocean and ENSO vertical patterns. These results demonstrate the potential of data-driven ocean models for providing cheap, efficient, and accurate global ocean modeling and prediction. Moreover, ORCA stably and faithfully emulates ocean dynamics at decadal timescales, demonstrating its potential even for climate projections. The model will be available at https://github.com/OpenEarthLab/ORCA.
- Abstract(参考訳): 海洋力学は、地球規模の気象と気候パターンを駆動する上で重要な役割を担っている。
海洋力学の高精度かつ効率的なモデリングは、複雑な海洋循環とプロセスの理解の向上、気候変動の変動とその関連する相互接続の予測、気候変動の課題への対処に不可欠である。
OGCM(Ocean General Circulation Models)の改良に多大な努力が払われているが、多年にわたる大洋変動の正確な予測は長年にわたる課題である。
ここでは, 海洋循環を複数年から1年で予測する最初のデータ駆動モデルであるORCA(Oceanic Reliable foreCAst)を紹介する。
ORCAは、大洋の3次元の循環と力学を、高い物理的整合性で正確にシミュレートする。
主要な海洋変数のヒドキャストは、海洋変動を予測するORCAの顕著な予測能力と、最先端の数値OGCMと、地下海洋やENSOの垂直パターンにおける極端な事象の発生を捉える能力を示している。
これらの結果は、安価で効率的で正確な大洋モデルと予測を提供するための、データ駆動型海洋モデルの可能性を示している。
さらに、ORCAは周期的な時間スケールで海洋力学を安定かつ忠実にエミュレートし、気候予測にもその可能性を示す。
モデルはhttps://github.com/OpenEarthLab/ORCAで入手できる。
関連論文リスト
- Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
我々は、高解像度の中距離海洋予測用に設計されたニューラルネットワークであるSeaCastを紹介する。
SeaCastはグラフベースのフレームワークを使用して、海洋グリッドの複雑な幾何学を処理し、地域の海洋環境に合わせて外部の強制データを統合する。
コペルニクス海洋局が提供した地中海の運用数値モデルを用いて,高空間分解能実験により本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-10-15T17:34:50Z) - Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model [0.6008008212472723]
我々は,高分解能(0.25deg)人工知能/機械学習(AI/ML)結合土系モデルであるオーシャンリンク大気(Ola)モデルを提案する。
その結果,Olaは適切な位相速度を持つ熱帯海洋波を含む海洋-大気結合力学の学習特性を示すことがわかった。
本研究では,地球物理流体力学研究所のSPEARモデルと比較し,エルニーニョ/南方振動(ENSO)の予測能力を示す。
論文 参考訳(メタデータ) (2024-06-12T20:29:14Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
既存の専門家が支配する数値シミュレーションは、地球温暖化や人的活動によって引き起こされる動的変動に追いつかなかった。
1920年から2023年までの世界の海洋脱酸素モデルを再構築するために,最初の深層学習モデルであるOxyGeneratorを提案する。
論文 参考訳(メタデータ) (2024-05-12T09:32:40Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
本研究は、海洋循環のための原理的ニューラルオペレーターベースのデジタルツインであるOceanNetを紹介する。
オーシャンネットは北西大西洋西部境界流(ガルフストリーム)に適用される
論文 参考訳(メタデータ) (2023-10-01T23:06:17Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
我々は,北極海氷濃度(SIC)予測のためのMT-IceNet - UNetに基づく空間・多時間深層学習モデルを提案する。
提案モデルでは,6ヶ月のリードタイムで予測誤差を最大60%低減し,画素ごとのSIC予測に有望な予測性能を提供する。
論文 参考訳(メタデータ) (2023-08-08T18:18:31Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Synergy between Observation Systems Oceanic in Turbulent Regions [0.0]
海洋ダイナミクスは、複雑な気候現象における海洋の役割を決定する上での公理の源である。
現在の観測システムは3次元海洋データに十分な統計的精度を達成するのに限界がある。
湾岸流と黒潮の延長流における海洋ダイナミクスのモデル化において,潜流クラス回帰と深層回帰ニューラルネットワークを探索するデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T22:52:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。