論文の概要: Model-free reinforcement learning with noisy actions for automated experimental control in optics
- arxiv url: http://arxiv.org/abs/2405.15421v1
- Date: Fri, 24 May 2024 10:36:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:52:03.861367
- Title: Model-free reinforcement learning with noisy actions for automated experimental control in optics
- Title(参考訳): 雑音を考慮したモデルレス強化学習による光学系における自動実験制御
- Authors: Lea Richtmann, Viktoria-S. Schmiesing, Dennis Wilken, Jan Heine, Aaron Tranter, Avishek Anand, Tobias J. Osborne, Michèle Heurs,
- Abstract要約: 強化学習(RL)を用いた光ファイバーにレーザー光を結合するための自動実験アライメントについて検討する。
時間を節約するために、私たちは仮想テストベッドを使用して、部分的な可観測性を扱う環境をチューニングします。
実験の完全なトレーニングにより、エージェントは、現在あるノイズを処理するために直接学習する。
- 参考スコア(独自算出の注目度): 2.3003734964536524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Experimental control involves a lot of manual effort with non-trivial decisions for precise adjustments. Here, we study the automatic experimental alignment for coupling laser light into an optical fiber using reinforcement learning (RL). We face several real-world challenges, such as time-consuming training, partial observability, and noisy actions due to imprecision in the mirror steering motors. We show that we can overcome these challenges: To save time, we use a virtual testbed to tune our environment for dealing with partial observability and use relatively sample-efficient model-free RL algorithms like Soft Actor-Critic (SAC) or Truncated Quantile Critics (TQC). Furthermore, by fully training on the experiment, the agent learns directly to handle the noise present. In our extensive experimentation, we show that we are able to achieve 90% coupling, showcasing the effectiveness of our proposed approaches. We reach this efficiency, which is comparable to that of a human expert, without additional feedback loops despite the motors' inaccuracies. Our result is an example of the readiness of RL for real-world tasks. We consider RL a promising tool for reducing the workload in labs.
- Abstract(参考訳): 実験的な制御は、正確な調整のための非自明な決定を伴う多くの手作業を伴う。
本稿では,RLを用いた光ファイバーにレーザ光を結合するための自動実験アライメントについて検討する。
我々は,ミラーステアリングモータの不正確さによる時間的トレーニング,部分的可観測性,ノイズなどの現実的な課題に直面している。
時間を節約するために、私たちは仮想テストベッドを使用して、部分的な可観測性を扱うように環境をチューニングし、Soft Actor-Critic (SAC)やTruncated Quantile Critics (TQC)のような比較的サンプル効率のよいモデルレスRLアルゴリズムを使用します。
さらに、実験の完全トレーニングにより、エージェントは、現在あるノイズを処理するために直接学習する。
大規模な実験では、90%のカップリングを達成でき、提案手法の有効性を示す。
我々は、モーターの不正確さにもかかわらず、フィードバックループを追加せずに、人間の専門家に匹敵するこの効率に達する。
この結果は実世界のタスクに対するRLの即応性の一例である。
我々はRLを実験室の作業量を削減できる有望なツールだと考えている。
関連論文リスト
- SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning [11.304750795377657]
確率的図形モデル(PGM)を用いた人間の直観を符号化するフレームワークShireを提案する。
ShiREは、評価対象環境の25~78%のサンプル効率を、無視可能なオーバーヘッドコストで達成します。
論文 参考訳(メタデータ) (2024-09-16T04:46:22Z) - Benchmarking Reinforcement Learning Methods for Dexterous Robotic Manipulation with a Three-Fingered Gripper [0.7364531214545392]
強化学習(RL)トレーニングは主に費用対効果と制御されたシミュレーション環境で行われる。
本研究では,厳密な操作を行うための実世界の制御環境におけるRLアルゴリズムの直接訓練について検討する。
論文 参考訳(メタデータ) (2024-08-27T02:52:15Z) - Bootstrapping Reinforcement Learning with Imitation for Vision-Based Agile Flight [20.92646531472541]
本稿では,Reinforcement Learning(RL)とImitation Learning(IL)のサンプル効率を組み合わせた新しいアプローチを提案する。
本フレームワークは、RLを用いた3段階の教員政策と、ILによる学生政策に蒸留する特権状態情報と、RLによる適応微調整とを含む。
テストでは、スクラッチからRLが失敗するシナリオだけでなく、ロバストさとパフォーマンスの両方で既存のILメソッドよりも優れています。
論文 参考訳(メタデータ) (2024-03-18T19:25:57Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context Learning (ICL) は、近年の大規模言語モデル(LLM)の進歩により、効率的なアプローチとなっている。
しかし、両方のパラダイムは、過信の批判的な問題(すなわち、誤校正)に苦しむ傾向にある。
論文 参考訳(メタデータ) (2023-12-21T11:55:10Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
我々は、現実の低照度シナリオにおいて、高速でフレキシブルで頑健な鮮明化のための新しい自己校正イルミネーション(SCI)学習フレームワークを開発した。
カスケードパターンの計算負担を考慮すると、各ステージの結果の収束を実現する自己校正モジュールを構築する。
我々は,SCI固有の特性について,操作不感適応性やモデル非関係の一般性を含む包括的探索を行う。
論文 参考訳(メタデータ) (2022-04-21T14:40:32Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
人間や動物が行うような現実世界の具体的学習は、連続的で非エポゾディックな世界にある。
RLの一般的なベンチマークタスクはエピソジックであり、試行錯誤によってエージェントに複数の試行を行う環境がリセットされる。
この相違は、擬似環境向けに開発されたRLアルゴリズムを現実世界のプラットフォーム上で実行しようとする場合、大きな課題となる。
論文 参考訳(メタデータ) (2021-12-17T16:28:06Z) - Hyperparameter Auto-tuning in Self-Supervised Robotic Learning [12.193817049957733]
不十分な学習(局所最適収束による)は、冗長な学習が時間と資源を浪費する一方で、低パフォーマンスの政策をもたらす。
自己教師付き強化学習のためのエビデンス下界(ELBO)に基づく自動チューニング手法を提案する。
本手法は,オンラインで自動チューニングが可能であり,計算資源のごく一部で最高の性能が得られる。
論文 参考訳(メタデータ) (2020-10-16T08:58:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。