Towards Precision Healthcare: Robust Fusion of Time Series and Image Data
- URL: http://arxiv.org/abs/2405.15442v1
- Date: Fri, 24 May 2024 11:18:13 GMT
- Title: Towards Precision Healthcare: Robust Fusion of Time Series and Image Data
- Authors: Ali Rasekh, Reza Heidari, Amir Hosein Haji Mohammad Rezaie, Parsa Sharifi Sedeh, Zahra Ahmadi, Prasenjit Mitra, Wolfgang Nejdl,
- Abstract summary: We introduce a new method that uses two separate encoders, one for each type of data, allowing the model to understand complex patterns in both visual and time-based information.
We also deal with imbalanced datasets and use an uncertainty loss function, yielding improved results.
Our experiments show that our method is effective in improving multimodal deep learning for clinical applications.
- Score: 8.579651833717763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing availability of diverse data types, particularly images and time series data from medical experiments, there is a growing demand for techniques designed to combine various modalities of data effectively. Our motivation comes from the important areas of predicting mortality and phenotyping where using different modalities of data could significantly improve our ability to predict. To tackle this challenge, we introduce a new method that uses two separate encoders, one for each type of data, allowing the model to understand complex patterns in both visual and time-based information. Apart from the technical challenges, our goal is to make the predictive model more robust in noisy conditions and perform better than current methods. We also deal with imbalanced datasets and use an uncertainty loss function, yielding improved results while simultaneously providing a principled means of modeling uncertainty. Additionally, we include attention mechanisms to fuse different modalities, allowing the model to focus on what's important for each task. We tested our approach using the comprehensive multimodal MIMIC dataset, combining MIMIC-IV and MIMIC-CXR datasets. Our experiments show that our method is effective in improving multimodal deep learning for clinical applications. The code will be made available online.
Related papers
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era [3.2549142515720044]
This paper introduces a new process model for multimodal Data Fusion for Data Mining.
Our model aims to decrease computational costs, complexity, and bias while improving efficiency and reliability.
We demonstrate its efficacy through three use cases: predicting diabetic retinopathy using retinal images and patient metadata, domestic violence prediction employing satellite imagery, internet, and census data, and identifying clinical and demographic features from radiography images and clinical notes.
arXiv Detail & Related papers (2024-04-18T15:52:42Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
We propose DrFuse to achieve effective clinical multi-modal fusion.
We address the missing modality issue by disentangling the features shared across modalities and those unique within each modality.
We validate the proposed method using real-world large-scale datasets, MIMIC-IV and MIMIC-CXR.
arXiv Detail & Related papers (2024-03-10T12:41:34Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
In this work, we introduce a novel FL architecture designed to accommodate not only the heterogeneity of data samples, but also the inherent heterogeneity/non-uniformity of data modalities across institutions.
We propose a solution by devising a distributed gradient blending and proximity-aware client weighting strategy tailored for multi-modal FL.
arXiv Detail & Related papers (2024-01-07T23:45:01Z) - Dynamic Multimodal Information Bottleneck for Multimodality
Classification [26.65073424377933]
We propose a dynamic multimodal information bottleneck framework for attaining a robust fused feature representation.
Specifically, our information bottleneck module serves to filter out the task-irrelevant information and noises in the fused feature.
Our method surpasses the state-of-the-art and is significantly more robust, being the only method to remain performance when large-scale noisy channels exist.
arXiv Detail & Related papers (2023-11-02T08:34:08Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.