Towards Relational Quantum Field Theory
- URL: http://arxiv.org/abs/2405.15455v2
- Date: Mon, 22 Jul 2024 17:24:34 GMT
- Title: Towards Relational Quantum Field Theory
- Authors: Jan GÅ‚owacki,
- Abstract summary: We develop a general integration theory for operator-valued functions (quantum fields) with respect to positive operator-valued measures (quantum frames)
A form of indefinitetemporality arises from quantum states in the context of relational frame bundles.
This offers novel perspectives on the problem of reconciling principles of generally relativistic and quantum physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a research program aimed at establishing relational foundations for relativistic quantum physics. Although the formalism is still under development, we believe it has matured enough to be shared with the broader scientific community. Our approach seeks to integrate Quantum Field Theory on curved backgrounds and scenarios with indefinite causality. Building on concepts from the operational approach to Quantum Reference Frames, we extend these ideas significantly. Specifically, we initiate the development of a general integration theory for operator-valued functions (quantum fields) with respect to positive operator-valued measures (quantum frames). This allows us to define quantum frames within the context of arbitrary principal bundles, replacing group structures. By considering Lorentz principal bundles, we enable a relational treatment of quantum fields on arbitrarily curved spacetimes. A form of indefinite spatiotemporality arises from quantum states in the context of frame bundles. This offers novel perspectives on the problem of reconciling principles of generally relativistic and quantum physics and on modelling gravitational fields sourced by quantum systems.
Related papers
- Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Does Quantum Mechanics Breed Larger, More Intricate Quantum Theories?
The Case for Experience-Centric Quantum Theory and the Interactome of Quantum
Theories [0.0]
We show that the recently proposed experience-centric quantum theory (ECQT) is a larger and richer theory of quantum behaviors.
ECQT allows the quantum information of the closed quantum system's developed state history to continually contribute to defining manybody interactions.
The interplay of unitarity and non-Markovianity in ECQT brings about a host of diverse behavioral phases.
arXiv Detail & Related papers (2023-08-04T16:33:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - The hidden quantum origin of gauge connections [0.0]
I employ a standard fibre bundle approach to introduce gauge theories.
I will try to justify the assessment that if we are to allow for gauge fields and parallel transport, we may have to allow at least some level of quantumness.
arXiv Detail & Related papers (2022-05-20T07:39:36Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Gravity, Quantum Fields and Quantum Information: Problems with classical
channel and stochastic theories [0.0]
We show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
Second, we point out that in general one cannot replace a quantum field by that of classical sources, or mock up the effects of quantum fluctuations by classical noises.
arXiv Detail & Related papers (2022-02-06T14:55:46Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - An introductory review on resource theories of generalized nonclassical
light [0.0]
Quantum resource theory is perhaps the most revolutionary framework that quantum physics has ever experienced.
Generalized quantum optical framework strives to bring in several prosperous contemporary ideas.
arXiv Detail & Related papers (2021-03-23T05:10:44Z) - Spacetime Quantum Actions [0.0]
We propose a formulation of quantum mechanics in an extended Fock space in which a tensor product structure is applied to time.
Subspaces of histories consistent with the dynamics of a particular theory are defined by a direct quantum generalization of the corresponding classical action.
The diagonalization of such quantum actions enables us to recover the predictions of conventional quantum mechanics and reveals an extended unitary equivalence between all physical theories.
arXiv Detail & Related papers (2020-10-18T23:14:10Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.