論文の概要: Emergence of a High-Dimensional Abstraction Phase in Language Transformers
- arxiv url: http://arxiv.org/abs/2405.15471v1
- Date: Fri, 24 May 2024 11:49:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:32:33.230466
- Title: Emergence of a High-Dimensional Abstraction Phase in Language Transformers
- Title(参考訳): 言語変換器における高次元抽象位相の発生
- Authors: Emily Cheng, Diego Doimo, Corentin Kervadec, Iuri Macocco, Jade Yu, Alessandro Laio, Marco Baroni,
- Abstract要約: 言語モデル (LM) は、言語コンテキストから出力トークンへのマッピングである。
我々は5つの事前学習されたトランスフォーマーベースLMと3つの入力データセットに対して、その解析、観察、高レベルの幾何学的アプローチをとる。
本結果は,多くの共通LMアーキテクチャにおいて,中心的な高次元位相がコア言語処理の基盤となることを示唆している。
- 参考スコア(独自算出の注目度): 47.60397331657208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A language model (LM) is a mapping from a linguistic context to an output token. However, much remains to be known about this mapping, including how its geometric properties relate to its function. We take a high-level geometric approach to its analysis, observing, across five pre-trained transformer-based LMs and three input datasets, a distinct phase characterized by high intrinsic dimensionality. During this phase, representations (1) correspond to the first full linguistic abstraction of the input; (2) are the first to viably transfer to downstream tasks; (3) predict each other across different LMs. Moreover, we find that an earlier onset of the phase strongly predicts better language modelling performance. In short, our results suggest that a central high-dimensionality phase underlies core linguistic processing in many common LM architectures.
- Abstract(参考訳): 言語モデル (LM) は、言語コンテキストから出力トークンへのマッピングである。
しかし、この写像について多くのことは分かっておらず、その幾何学的性質がその函数にどのように関係しているかを含んでいる。
我々は,5つの事前学習されたトランスフォーマーベースLMと3つの入力データセットを対象とし,その解析と観察に高レベルの幾何学的アプローチを採っている。
このフェーズでは、(1) 表現は入力の最初の完全な言語的抽象化に対応し、(2) 下流のタスクに生き生きと移行し、(3) 異なるLM間で互いに予測する。
さらに,初期の段階では,より優れた言語モデリング性能が期待できることがわかった。
この結果から,多くの共通LMアーキテクチャにおいて,中心的な高次元位相が中核言語処理の基盤となることが示唆された。
関連論文リスト
- The Locality and Symmetry of Positional Encodings [9.246374019271938]
我々はtextbfBi Masked Language Models (BERT-style) における位置符号化の体系的研究を行う。
PEのコア関数は、局所性と対称性という2つの共通性質を同定することによって明らかにする。
2つの新しい探索タスクを導入し、現在のPEの弱点を定量化する。
論文 参考訳(メタデータ) (2023-10-19T16:15:15Z) - Linearity of Relation Decoding in Transformer Language Models [82.47019600662874]
トランスフォーマー言語モデル(LM)で符号化された知識の多くは、関係性の観点から表現することができる。
関係のサブセットに対して、この計算は対象表現上の1つの線形変換によってよく近似されることを示す。
論文 参考訳(メタデータ) (2023-08-17T17:59:19Z) - The geometry of hidden representations of large transformer models [43.16765170255552]
大規模トランスは、さまざまなデータタイプをまたいだ自己教師型データ分析に使用される強力なアーキテクチャである。
データセットのセマンティック構造は、ある表現と次の表現の間の変換のシーケンスから現れることを示す。
本研究は,データセットのセマンティクス情報が第1ピークの終わりによりよく表現されることを示し,この現象を多種多様なデータセットで訓練された多くのモデルで観測できることを示した。
論文 参考訳(メタデータ) (2023-02-01T07:50:26Z) - Improve Transformer Pre-Training with Decoupled Directional Relative
Position Encoding and Representation Differentiations [23.2969212998404]
トランスフォーマーに基づく事前学習言語モデルを再検討し、モデルの表現性を制限する可能性のある2つの問題を特定する。
既存の相対位置符号化モデルは、相対距離と方向という2つの異種情報を混同する。
事前学習型言語モデルを改善するための2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-09T12:35:04Z) - Learning Multiscale Transformer Models for Sequence Generation [33.73729074207944]
単語境界情報と句レベルの事前知識に基づいて,スケール間の関係を確立することで,マルチスケールトランスフォーマーモデルを構築する。
特に、いくつかのテストセットにおいて、効率を犠牲にすることなく、強いベースラインに対して一貫したパフォーマンス向上を実現した。
論文 参考訳(メタデータ) (2022-06-19T07:28:54Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
形態的に豊かな言語は機械翻訳に困難をもたらす。
多数の異なる屈折する単語曲面は、より大きな語彙を必要とする。
いくつかの頻度の低い用語は、通常、トレーニングコーパスには現れない。
言語的合意は、出力文中の屈折語形間の文法的カテゴリを正しく一致させる必要がある。
論文 参考訳(メタデータ) (2022-03-25T10:13:20Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
目的と観測を埋め込みのシーケンスとして表現する模倣学習の枠組みを述べる。
このフレームワークは様々な環境にまたがって効果的な一般化を可能にすることを実証する。
新たなゴールや新しいシーンを含むテストタスクでは、言語モデルによる初期化ポリシーはタスク完了率を43.6%改善する。
論文 参考訳(メタデータ) (2022-02-03T18:55:52Z) - SML: a new Semantic Embedding Alignment Transformer for efficient
cross-lingual Natural Language Inference [71.57324258813674]
トランスフォーマーが質問応答、自然言語推論(NLI)、要約といった様々なタスクを精度良く実行できることは、現在この種のタスクに対処するための最良のパラダイムの1つとしてランク付けすることができる。
nliは、複雑な文を理解するための知識が必要であり、仮説と前提の関係を確立するため、これらのアーキテクチャをテストする最良のシナリオの1つである。
本稿では,自然言語推論のための多言語組込みを効率的にアライメントするための新しいアーキテクチャ siamese multilingual transformer を提案する。
論文 参考訳(メタデータ) (2021-03-17T13:23:53Z) - Is Supervised Syntactic Parsing Beneficial for Language Understanding?
An Empirical Investigation [71.70562795158625]
従来のNLPは、高レベルセマンティック言語理解(LU)の成功に必要な構文解析を長い間保持(教師付き)してきた。
近年のエンドツーエンドニューラルネットワークの出現、言語モデリング(LM)による自己監視、および幅広いLUタスクにおける成功は、この信念に疑問を投げかけている。
本研究では,LM-Pretrained Transformer Network の文脈における意味的LUに対する教師あり構文解析の有用性を実証的に検討する。
論文 参考訳(メタデータ) (2020-08-15T21:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。