論文の概要: Hierarchical Loss And Geometric Mask Refinement For Multilabel Ribs Segmentation
- arxiv url: http://arxiv.org/abs/2405.15500v1
- Date: Fri, 24 May 2024 12:39:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:22:48.311238
- Title: Hierarchical Loss And Geometric Mask Refinement For Multilabel Ribs Segmentation
- Title(参考訳): マルチラベルリブ分割のための階層的損失と幾何学的マスク微細化
- Authors: Aleksei Leonov, Aleksei Zakharov, Sergey Koshelev, Maxim Pisov, Anvar Kurmukov, Mikhail Belyaev,
- Abstract要約: 階層的損失関数を用いたマルチラベルリブ分割モデルを提案する。
我々のモデルは、パブリックなRibSeg v2データセットで98.2%のラベル精度を達成した。
- 参考スコア(独自算出の注目度): 0.22137257283361803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic ribs segmentation and numeration can increase computed tomography assessment speed and reduce radiologists mistakes. We introduce a model for multilabel ribs segmentation with hierarchical loss function, which enable to improve multilabel segmentation quality. Also we propose postprocessing technique to further increase labeling quality. Our model achieved new state-of-the-art 98.2% label accuracy on public RibSeg v2 dataset, surpassing previous result by 6.7%.
- Abstract(参考訳): 自動リブセグメンテーションと数値化は、計算トモグラフィー評価の速度を高め、放射線技師のミスを減らすことができる。
階層的損失関数を持つマルチラベルリブセグメンテーションのモデルを導入し、マルチラベルセグメンテーションの品質を向上させる。
また,ラベル付け品質をさらに向上させるポストプロセッシング手法を提案する。
我々のモデルは、パブリックなRibSeg v2データセットで98.2%のラベルの精度を新たに達成し、以前の結果を6.7%上回った。
関連論文リスト
- Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - FUSQA: Fetal Ultrasound Segmentation Quality Assessment [1.0819408603463427]
分割品質評価に取り組むための簡易な胎児超音波品質評価(FUSQA)モデルを提案する。
そこで我々は、より正確な妊娠年齢推定のために、セグメンテーション品質評価プロセスを自動分類タスクとして定式化し、良質なセグメンテーションマスクと良質なセグメンテーションマスクを区別する。
論文 参考訳(メタデータ) (2023-03-08T07:45:06Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - MAPPING: Model Average with Post-processing for Stroke Lesion
Segmentation [57.336056469276585]
我々は nnU-Net フレームワークに基づく脳卒中病変のセグメンテーションモデルを提案し, ストローク後の解剖学的トレースに応用する。
本手法は,2022年のMICCAI ATLAS Challengeにおいて,平均Diceスコアが0.6667,Lesion-wise F1スコアが0.5643,Simple Lesion Countスコアが4.5367,Volume differenceスコアが8804.9102であった。
論文 参考訳(メタデータ) (2022-11-11T14:17:04Z) - Transfer learning with weak labels from radiology reports: application
to glioma change detection [0.2010294990327175]
弱いラベル(不正確だが高速に生成するアノテーション)とトランスファーラーニング(TL)の併用を提案する。
具体的には、ソースドメインとターゲットドメインが同一であるが、ラベルシフトによってタスクが異なるインダクティブTLについて検討する。
低容量VGGと高容量SEResNeXtを比較し,モデルサイズとTLの関係について検討した。
論文 参考訳(メタデータ) (2022-10-18T09:15:27Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Exploring dual-attention mechanism with multi-scale feature extraction
scheme for skin lesion segmentation [0.0]
本研究では,新しい畳み込みニューラルネットワークを用いた皮膚病変分割法を提案する。
より差別的な特徴を抽出するために,新しいマルチスケール特徴抽出モジュールを提案する。
提案手法は、ISIC 2018データセットで97.5%、94.29%、91.16%、95.92%、95.37%、91.52%の精度、リコール、JSIを報告した。
論文 参考訳(メタデータ) (2021-11-16T14:08:35Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
この研究は、機械学習アルゴリズムに胸部X線入力のための一般的な前処理ステップを導入する。
VGG11エンコーダをベースとした改良Y-Netアーキテクチャを用いて,ラジオグラフィの幾何学的配向とセグメンテーションを同時に学習する。
対照画像の27.0%,34.9%に対し,95.8%,96.2%のアノテーションマスクが認められた。
論文 参考訳(メタデータ) (2020-05-08T02:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。