Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments
- URL: http://arxiv.org/abs/2405.15508v1
- Date: Fri, 24 May 2024 12:52:46 GMT
- Title: Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments
- Authors: Olivia Jullian Parra, Julián García Pardiñas, Lorenzo Del Pianta Pérez, Maximilian Janisch, Suzanne Klaver, Thomas Lehéricy, Nicola Serra,
- Abstract summary: We propose a proof-of-concept for applying human-in-the-loop Reinforcement Learning to automate the Data Quality Monitoring process.
We show that random, unbiased noise in human classification can be reduced, leading to an improved accuracy over the baseline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data Quality Monitoring (DQM) is a crucial task in large particle physics experiments, since detector malfunctioning can compromise the data. DQM is currently performed by human shifters, which is costly and results in limited accuracy. In this work, we provide a proof-of-concept for applying human-in-the-loop Reinforcement Learning (RL) to automate the DQM process while adapting to operating conditions that change over time. We implement a prototype based on the Proximal Policy Optimization (PPO) algorithm and validate it on a simplified synthetic dataset. We demonstrate how a multi-agent system can be trained for continuous automated monitoring during data collection, with human intervention actively requested only when relevant. We show that random, unbiased noise in human classification can be reduced, leading to an improved accuracy over the baseline. Additionally, we propose data augmentation techniques to deal with scarce data and to accelerate the learning process. Finally, we discuss further steps needed to implement the approach in the real world, including protocols for periodic control of the algorithm's outputs.
Related papers
- CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
We propose a Curiosity-driven Unsupervised Data Collection (CUDC) method to expand feature space using adaptive temporal distances for task-agnostic data collection.
With this adaptive reachability mechanism in place, the feature representation can be diversified, and the agent can navigate itself to collect higher-quality data with curiosity.
Empirically, CUDC surpasses existing unsupervised methods in efficiency and learning performance in various downstream offline RL tasks of the DeepMind control suite.
arXiv Detail & Related papers (2023-12-19T14:26:23Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Efficient human-in-loop deep learning model training with iterative
refinement and statistical result validation [0.0]
We demonstrate a method for creating segmentations, a necessary part of a data cleaning for ultrasound imaging machine learning pipelines.
We propose a four-step method to leverage automatically generated training data and fast human visual checks to improve model accuracy while keeping the time/effort and cost low.
The method is demonstrated on a cardiac ultrasound segmentation task, removing background data, including static PHI.
arXiv Detail & Related papers (2023-04-03T13:56:01Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data.
We propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data.
Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent.
arXiv Detail & Related papers (2022-12-16T01:41:59Z) - Model Predictive Control via On-Policy Imitation Learning [28.96122879515294]
We develop new sample complexity results and performance guarantees for data-driven Model Predictive Control.
Our algorithm uses the structure of constrained linear MPC, and our analysis uses the properties of the explicit MPC solution to theoretically bound the number of online MPC trajectories needed to achieve optimal performance.
arXiv Detail & Related papers (2022-10-17T16:06:06Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
We build a data collection system tailored to 6-DoF manipulation settings.
We develop an algorithm to train the policy iteratively on new data collected by the system.
We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators.
arXiv Detail & Related papers (2020-12-12T05:30:35Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.