Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications
- URL: http://arxiv.org/abs/2107.11750v1
- Date: Sun, 25 Jul 2021 07:52:53 GMT
- Title: Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications
- Authors: Yeli Feng, Daniel Jun Xian Ng, Arvind Easwaran
- Abstract summary: Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
- Score: 2.9327503320877457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainties in machine learning are a significant roadblock for its
application in safety-critical cyber-physical systems (CPS). One source of
uncertainty arises from distribution shifts in the input data between training
and test scenarios. Detecting such distribution shifts in real-time is an
emerging approach to address the challenge. The high dimensional input space in
CPS applications involving imaging adds extra difficulty to the task.
Generative learning models are widely adopted for the task, namely
out-of-distribution (OoD) detection. To improve the state-of-the-art, we
studied existing proposals from both machine learning and CPS fields. In the
latter, safety monitoring in real-time for autonomous driving agents has been a
focus. Exploiting the spatiotemporal correlation of motion in videos, we can
robustly detect hazardous motion around autonomous driving agents. Inspired by
the latest advances in the Variational Autoencoder (VAE) theory and practice,
we tapped into the prior knowledge in data to further boost OoD detection's
robustness. Comparison studies over nuScenes and Synthia data sets show our
methods significantly improve detection capabilities of OoD factors unique to
driving scenarios, 42% better than state-of-the-art approaches. Our model also
generalized near-perfectly, 97% better than the state-of-the-art across the
real-world and simulation driving data sets experimented. Finally, we
customized one proposed method into a twin-encoder model that can be deployed
to resource limited embedded devices for real-time OoD detection. Its execution
time was reduced over four times in low-precision 8-bit integer inference,
while detection capability is comparable to its corresponding floating-point
model.
Related papers
- Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression [1.5039745292757671]
We propose an approach to detect the dataset shifts effectively for regression problems.
Our approach is based on the inductive conformal anomaly detection and utilizes a variational autoencoder for regression model.
We demonstrate our approach by using an advanced emergency braking system implemented in an open-source simulator for self-driving cars.
arXiv Detail & Related papers (2021-04-14T03:46:37Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Self-awareness in intelligent vehicles: Feature based dynamic Bayesian
models for abnormality detection [4.251384905163326]
This paper aims to introduce a novel method to develop self-awareness in autonomous vehicles.
Time-series data from the vehicles are used to develop the data-driven Dynamic Bayesian Network (DBN) models.
An initial level collective awareness model that can perform joint anomaly detection in co-operative tasks is proposed.
arXiv Detail & Related papers (2020-10-29T09:29:47Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Real-time Out-of-distribution Detection in Learning-Enabled
Cyber-Physical Systems [1.4213973379473654]
Cyber-physical systems benefit by using machine learning components that can handle the uncertainty and variability of the real-world.
Deep neural networks, however, introduce new types of hazards that may impact system safety.
Out-of-distribution data may lead to a large error and compromise safety.
arXiv Detail & Related papers (2020-01-28T17:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.