Harnessing Increased Client Participation with Cohort-Parallel Federated Learning
- URL: http://arxiv.org/abs/2405.15644v1
- Date: Fri, 24 May 2024 15:34:09 GMT
- Title: Harnessing Increased Client Participation with Cohort-Parallel Federated Learning
- Authors: Akash Dhasade, Anne-Marie Kermarrec, Tuan-Anh Nguyen, Rafael Pires, Martijn de Vos,
- Abstract summary: Federated Learning (FL) is a machine learning approach where nodes collaboratively train a global model.
We introduce Cohort-Parallel Federated Learning (CPFL), a novel learning approach where each cohort independently trains a global model.
CPFL with four cohorts, non-IID data distribution, and CIFAR-10 yields a 1.9$times$ reduction in train time and a 1.3$times$ reduction in resource usage.
- Score: 2.9593087583214173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a machine learning approach where nodes collaboratively train a global model. As more nodes participate in a round of FL, the effectiveness of individual model updates by nodes also diminishes. In this study, we increase the effectiveness of client updates by dividing the network into smaller partitions, or cohorts. We introduce Cohort-Parallel Federated Learning (CPFL): a novel learning approach where each cohort independently trains a global model using FL, until convergence, and the produced models by each cohort are then unified using one-shot Knowledge Distillation (KD) and a cross-domain, unlabeled dataset. The insight behind CPFL is that smaller, isolated networks converge quicker than in a one-network setting where all nodes participate. Through exhaustive experiments involving realistic traces and non-IID data distributions on the CIFAR-10 and FEMNIST image classification tasks, we investigate the balance between the number of cohorts, model accuracy, training time, and compute and communication resources. Compared to traditional FL, CPFL with four cohorts, non-IID data distribution, and CIFAR-10 yields a 1.9$\times$ reduction in train time and a 1.3$\times$ reduction in resource usage, with a minimal drop in test accuracy.
Related papers
- FedEP: Tailoring Attention to Heterogeneous Data Distribution with Entropy Pooling for Decentralized Federated Learning [8.576433180938004]
This paper proposes a novel DFL aggregation algorithm, Federated Entropy Pooling (FedEP)
FedEP mitigates the client drift problem by incorporating the statistical characteristics of local distributions instead of any actual data.
Experiments have demonstrated that FedEP can achieve faster convergence and show higher test performance than state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-10T07:39:15Z) - SFedCA: Credit Assignment-Based Active Client Selection Strategy for Spiking Federated Learning [15.256986486372407]
Spiking federated learning allows resource-constrained devices to train collaboratively at low power consumption without exchanging local data.
Existing spiking federated learning methods employ a random selection approach for client aggregation, assuming unbiased client participation.
We propose a credit assignment-based active client selection strategy, the SFedCA, to judiciously aggregate clients that contribute to the global sample distribution balance.
arXiv Detail & Related papers (2024-06-18T01:56:22Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - FedDCT: Federated Learning of Large Convolutional Neural Networks on
Resource Constrained Devices using Divide and Collaborative Training [13.072061144206097]
We introduce FedDCT, a novel distributed learning paradigm that enables the usage of large, high-performance CNNs on resource-limited edge devices.
We empirically conduct experiments on standardized datasets, including CIFAR-10, CIFAR-100, and two real-world medical datasets HAM10000 and VAIPE.
Compared to other existing approaches, FedDCT achieves higher accuracy and substantially reduces the number of communication rounds.
arXiv Detail & Related papers (2022-11-20T11:11:56Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Federated learning with hierarchical clustering of local updates to
improve training on non-IID data [3.3517146652431378]
We show that learning a single joint model is often not optimal in the presence of certain types of non-iid data.
We present a modification to FL by introducing a hierarchical clustering step (FL+HC)
We show how FL+HC allows model training to converge in fewer communication rounds compared to FL without clustering.
arXiv Detail & Related papers (2020-04-24T15:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.