論文の概要: Low-Light Video Enhancement via Spatial-Temporal Consistent Illumination and Reflection Decomposition
- arxiv url: http://arxiv.org/abs/2405.15660v1
- Date: Fri, 24 May 2024 15:56:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 13:20:55.789701
- Title: Low-Light Video Enhancement via Spatial-Temporal Consistent Illumination and Reflection Decomposition
- Title(参考訳): 空間的一貫性イルミネーションと反射分解による低照度映像の高精細化
- Authors: Xiaogang Xu, Kun Zhou, Tao Hu, Ruixing Wang, Hujun Bao,
- Abstract要約: 低照度ビデオエンハンスメント(LLVE)は、激しい視認性とノイズに悩まされる動的および静的なシーンの復元を目指している。
1つの重要な側面は、時間空間照明と外観強化バージョンに特化した一貫性の制約を定式化することである。
本稿では,レチネックスを基盤とした革新的なビデオ分解戦略について述べる。
- 参考スコア(独自算出の注目度): 68.6707284662443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Light Video Enhancement (LLVE) seeks to restore dynamic and static scenes plagued by severe invisibility and noise. One critical aspect is formulating a consistency constraint specifically for temporal-spatial illumination and appearance enhanced versions, a dimension overlooked in existing methods. In this paper, we present an innovative video Retinex-based decomposition strategy that operates without the need for explicit supervision to delineate illumination and reflectance components. We leverage dynamic cross-frame correspondences for intrinsic appearance and enforce a scene-level continuity constraint on the illumination field to yield satisfactory consistent decomposition results. To further ensure consistent decomposition, we introduce a dual-structure enhancement network featuring a novel cross-frame interaction mechanism. This mechanism can seamlessly integrate with encoder-decoder single-frame networks, incurring minimal additional parameter costs. By supervising different frames simultaneously, this network encourages them to exhibit matching decomposition features, thus achieving the desired temporal propagation. Extensive experiments are conducted on widely recognized LLVE benchmarks, covering diverse scenarios. Our framework consistently outperforms existing methods, establishing a new state-of-the-art (SOTA) performance.
- Abstract(参考訳): 低照度ビデオエンハンスメント(LLVE)は、激しい視認性とノイズに悩まされる動的および静的なシーンの復元を目指している。
1つの重要な側面は、時間空間照明と外観向上バージョンに特化した一貫性の制約を定式化することである。
本稿では,照度と反射率を規定する明示的な監督を必要とせず,Retinexベースの分解戦略を提案する。
自然界の出現に動的クロスフレーム対応を活用し,照明領域におけるシーンレベルの連続性制約を適用し,良好な一貫した分解結果を得る。
さらに一貫した分解を確保するために、新しいクロスフレーム相互作用機構を備えた二重構造拡張ネットワークを導入する。
このメカニズムはエンコーダ・デコーダの単一フレームネットワークとシームレスに統合することができ、最小限のパラメータコストを発生させる。
異なるフレームを同時に監視することにより、このネットワークは、一致する分解特性を示すことを奨励し、所望の時間的伝搬を達成する。
LLVEベンチマークでは、さまざまなシナリオをカバーする大規模な実験が行われている。
我々のフレームワークは既存のメソッドを一貫して上回り、新しい最先端(SOTA)のパフォーマンスを確立します。
関連論文リスト
- DiffVSR: Enhancing Real-World Video Super-Resolution with Diffusion Models for Advanced Visual Quality and Temporal Consistency [25.756755602342942]
実世界のビデオ超解像のための拡散型フレームワークであるDiffVSRを提案する。
シーケンス内コヒーレンスのために,マルチスケールの時間的アテンションモジュールと時間的拡張型VAEデコーダを開発した。
本稿では, 単純な分解から複雑な分解へ移行し, 堅牢な最適化を実現するプログレッシブ・ラーニング・ストラテジーを提案する。
論文 参考訳(メタデータ) (2025-01-17T10:53:03Z) - Building a Multi-modal Spatiotemporal Expert for Zero-shot Action Recognition with CLIP [34.88916568947695]
マルチテンポラルダイナミクスを理解するための新しいCLIフレームワークを提案する。
視覚面では,効率的なダイナミック・クロスショット・アテンションを提案する。
セマンティック側では、アクション知識グラフを構築してテキスト拡張を行う。
論文 参考訳(メタデータ) (2024-12-13T06:30:52Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Videoは、ビデオアップスケーリングのためのテキストガイド付き遅延拡散フレームワークである。
ローカルでは、一時的なレイヤをU-NetとVAE-Decoderに統合し、短いシーケンス内で一貫性を維持する。
また、テキストプロンプトによってテクスチャ生成と調整可能なノイズレベルをガイドし、復元と生成のバランスを取ることで、柔軟性も向上する。
論文 参考訳(メタデータ) (2023-12-11T18:54:52Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
照明劣化画像復元(IDIR)技術は、劣化した画像の視認性を改善し、劣化した照明の悪影響を軽減することを目的としている。
これらのアルゴリズムのうち、拡散モデル(DM)に基づく手法は期待できる性能を示しているが、画像レベルの分布を予測する際に、重い計算要求や画素の不一致の問題に悩まされることが多い。
我々は、コンパクトな潜在空間内でDMを活用して、簡潔な指導先を生成することを提案し、IDIRタスクのためのReti-Diffと呼ばれる新しいソリューションを提案する。
Reti-Diff は Retinex-based Latent DM (RLDM) と Retinex-Guided Transformer (RG) の2つの鍵成分からなる。
論文 参考訳(メタデータ) (2023-11-20T09:55:06Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
オールインワンVRのためのクロスコンセントディープ・アンフォールディング・ネットワーク(CDUN)を提案する。
2つのカスケード手順を編成することにより、CDUNは様々な劣化に対する適応的な処理を達成する。
さらに、より隣接するフレームからの情報を活用するために、ウィンドウベースのフレーム間融合戦略を導入する。
論文 参考訳(メタデータ) (2023-09-04T14:18:00Z) - Temporal Consistency Learning of inter-frames for Video Super-Resolution [38.26035126565062]
ビデオ超解像(VSR)は、低解像度(LR)参照フレームと複数の隣接フレームから高解像度(HR)フレームを再構成することを目的としたタスクである。
既存の手法は一般に情報伝達とフレームアライメントを探求し、VSRの性能を向上させる。
本稿では,再建されたビデオの一貫性を高めるため,VSRのための時間一貫性学習ネットワーク(TCNet)を提案する。
論文 参考訳(メタデータ) (2022-11-03T08:23:57Z) - IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable
Novel View Synthesis [90.03590032170169]
内在性ニューラルレンダリング法に内在性分解を導入した内在性ニューラルレイディアンス場(IntrinsicNeRF)を提案する。
そこで,本研究では,オブジェクト固有・ルームスケールシーンと合成・実単語データの両方を用いて,一貫した本質的な分解結果が得られることを示す。
論文 参考訳(メタデータ) (2022-10-02T22:45:11Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。